結果

問題 No.426 往復漸化式
ユーザー りあんりあん
提出日時 2016-10-30 02:09:06
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 1,651 ms / 5,000 ms
コード長 11,395 bytes
コンパイル時間 1,259 ms
コンパイル使用メモリ 123,604 KB
実行使用メモリ 212,300 KB
最終ジャッジ日時 2024-05-03 19:43:44
合計ジャッジ時間 27,411 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
19,456 KB
testcase_01 AC 34 ms
21,120 KB
testcase_02 AC 35 ms
20,992 KB
testcase_03 AC 69 ms
24,960 KB
testcase_04 AC 67 ms
25,088 KB
testcase_05 AC 346 ms
51,188 KB
testcase_06 AC 331 ms
50,560 KB
testcase_07 AC 1,014 ms
174,812 KB
testcase_08 AC 1,105 ms
186,204 KB
testcase_09 AC 1,651 ms
185,948 KB
testcase_10 AC 1,450 ms
186,080 KB
testcase_11 AC 1,031 ms
156,772 KB
testcase_12 AC 1,391 ms
157,796 KB
testcase_13 AC 1,625 ms
185,696 KB
testcase_14 AC 1,375 ms
157,920 KB
testcase_15 AC 1,130 ms
155,996 KB
testcase_16 AC 1,562 ms
156,140 KB
testcase_17 AC 1,599 ms
156,260 KB
testcase_18 AC 1,548 ms
156,128 KB
testcase_19 AC 919 ms
156,248 KB
testcase_20 AC 1,159 ms
157,020 KB
testcase_21 AC 1,544 ms
212,300 KB
testcase_22 AC 1,140 ms
157,016 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    struct Nod { public long[][] A, B, S; }
    static Nod init()
    {
        var mt = new mymath();
        var ret = new Nod();
        ret.A = mt.E(3);
        ret.B = mt.E(2);
        ret.S = new long[2][];
        for (int i = 0; i < 2; i++) ret.S[i] = new long[3];

        return ret;
    }
    static Nod init(int i)
    {
        var ret = init();
        for (int j = 0; j < 2; j++) for (int k = 0; k < 3; k++) ret.S[j][k] = i * 6 + j * 3 + k;

        return ret;
    }

    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    const int M = 1000000007;
    const double eps = 1e-9;
    static int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        var sc = new Scan();
        var mt = new mymath();
        int n = sc.Int;
        var sgA = new Segtree<long[][]>(n + 2, (x, y) => mt.mul(y, x), mt.E(3));
        var sgB = new Segtree<long[][]>(n + 2, (x, y) => mt.mul(x, y), mt.E(2));
        var sgP = new Segtree<Nod>(n + 2, (x, y) =>
        {
            Nod ret = new Nod();
            ret.A = mt.mul(y.A, x.A);
            ret.B = mt.mul(x.B, y.B);
            ret.S = mt.add(mt.mul(x.B, mt.mul(y.S, x.A)), x.S);
            return ret;
        }, init());

        for (int i = 0; i <= n; i++) sgP.assign(i, init(i));

        sgP.all_update();

        var a = sc.LongArr;
        var b = sc.LongArr;
        int q = sc.Int;
        for (int i = 0; i < q; i++)
        {
            var inp = sc.StrArr;
            int ind = int.Parse(inp[1]);
            Nod nod = sgP.look(ind);
            switch (inp[0])
            {
                case "a":
                    for (int j = 0; j < 3; j++)
                        for (int k = 0; k < 3; k++)
                            nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]);

                    sgA.update(ind, nod.A);
                    sgP.update(ind, nod);
                    break;
                case "b":
                    for (int j = 0; j < 2; j++)
                        for (int k = 0; k < 2; k++)
                            nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]);

                    sgB.update(ind, nod.B);
                    sgP.update(ind, nod);
                    break;
                case "ga":
                    Prt(mt.mul(sgA.run(0, ind), a));
                    break;
                case "gb":
                    Prt(mt.add(mt.mul(sgB.run(ind + 1, n + 1), b), mt.mul(sgP.run(ind + 1, n + 1).S, mt.mul(sgA.run(0, ind + 1), a))));
                    break;
            }
        }
        sw.Flush();
    }
    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static T Max<T>(params T[] a) => a.Max();
    static T Min<T>(params T[] a) => a.Min();
    static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a));
    static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a));
    static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a));
    static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a));
}
static class ex
{
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a)
    {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
public static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
    public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}

class ScanCHK : Scan
{
    public new string Str { get { var s = Console.ReadLine(); return s == s.Trim() ? s : ""; } }
}
class Scan
{
    public int Int => int.Parse(Str);
    public long Long => long.Parse(Str);
    public double Double => double.Parse(Str);
    public string Str => Console.ReadLine().Trim();
    public int[] IntArr => StrArr.Select(int.Parse).ToArray();
    public long[] LongArr => StrArr.Select(long.Parse).ToArray();
    public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
    public string[] StrArr => Str.Split();
    bool eq<T, U>() => typeof(T).Equals(typeof(U));
    T ct<T, U>(U inp) => (T)Convert.ChangeType(inp, typeof(T));
    T cv<T>(string inp) => eq<T, int>() ? ct<T, int>(int.Parse(inp))
                         : eq<T, long>() ? ct<T, long>(long.Parse(inp))
                         : eq<T, double>() ? ct<T, double>(double.Parse(inp))
                         : eq<T, char>() ? ct<T, char>(inp[0])
                         : ct<T, string>(inp);
    public void Multi<T>(out T a) => a = cv<T>(Str);
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    long Mod = 1000000007;
    public void setMod(long m) => Mod = m;
    public bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public bool[] sieve(int n)
    {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public long[][] pow(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public long dot(long[] x, long[] y)
    {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public long[][] trans(long[][] A)
    {
        int n = A[0].Length, m = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++)
        {
            ret[i] = new long[m];
            for (int j = 0; j < m; j++) ret[i][j] = A[j][i];
        }
        return ret;
    }
    public long[] mul(long[][] A, long[] x)
    {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public long[][] mul(long[][] A, long[][] B)
    {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public long[] add(long[] x, long[] y)
    {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public long[][] add(long[][] A, long[][] B)
    {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public long pow(long a, long b)
    {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public long inv(long a) => pow(a, Mod - 2);
    public long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    // a x + b y = gcd(a, b)
    public long extgcd(long a, long b, out long x, out long y)
    {
        long g = a;
        x = 1;
        y = 0;
        if (b != 0)
        {
            g = extgcd(b, a % b, out y, out x);
            y -= a / b * x;
        }
        return g;
    }
    public long lcm(long a, long b) => a * (b / gcd(a, b));
    public long comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++)
        {
            int piv = denom[p - 1];
            if (piv > 1)
            {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
}
class Segtree<T>
{
    int n, s, t;
    T[] tr;
    Func<T, T, T> f;
    T exnum;

    // expect : f(ex, ex) = ex
    public Segtree(int m, Func<T, T, T> f, T ex)
    {
        this.f = f;
        this.exnum = ex;
        n = 1;
        while (n < m) n <<= 1;
        tr = new T[(n << 1) - 1];
        for (int i = 0; i < tr.Length; i++) tr[i] = ex;
    }
    public Segtree(int m, T ini, Func<T, T, T> f, T ex) : this(m, f, ex)
    {
        for (int i = 0; i < m; ++i) tr[i + n - 1] = ini;
        all_update();
    }
    public void assign(int j, T x) => tr[j + n - 1] = x;
    public void update(int j, T x)
    {
        int i = j + n - 1;
        tr[i] = x;
        while (i > 0) { i = i - 1 >> 1; tr[i] = f(tr[i << 1 | 1], tr[i + 1 << 1]); }
    }
    public void all_update() { for (int i = n - 2; i >= 0; i--) tr[i] = f(tr[i << 1 | 1], tr[i + 1 << 1]); }
    public T look(int i) => tr[i + n - 1];

    // [s, t)
    public T run(int s, int t) { this.s = s; this.t = t; return q(0, 0, n); }
    T q(int k, int l, int r) => r <= s || t <= l ? exnum
                              : s <= l && r <= t ? tr[k]
                              : f(q(k << 1 | 1, l, l + r >> 1), q(k + 1 << 1, l + r >> 1, r));
}
0