結果
問題 | No.426 往復漸化式 |
ユーザー | りあん |
提出日時 | 2016-10-30 02:09:06 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 1,493 ms / 5,000 ms |
コード長 | 11,395 bytes |
コンパイル時間 | 2,723 ms |
コンパイル使用メモリ | 115,712 KB |
実行使用メモリ | 221,872 KB |
最終ジャッジ日時 | 2024-11-24 23:30:11 |
合計ジャッジ時間 | 24,264 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
25,512 KB |
testcase_01 | AC | 32 ms
25,364 KB |
testcase_02 | AC | 32 ms
27,420 KB |
testcase_03 | AC | 61 ms
31,004 KB |
testcase_04 | AC | 61 ms
31,256 KB |
testcase_05 | AC | 296 ms
57,120 KB |
testcase_06 | AC | 298 ms
58,628 KB |
testcase_07 | AC | 911 ms
180,472 KB |
testcase_08 | AC | 989 ms
191,592 KB |
testcase_09 | AC | 1,283 ms
191,720 KB |
testcase_10 | AC | 1,296 ms
193,396 KB |
testcase_11 | AC | 930 ms
164,212 KB |
testcase_12 | AC | 1,255 ms
165,480 KB |
testcase_13 | AC | 1,493 ms
191,204 KB |
testcase_14 | AC | 1,221 ms
165,496 KB |
testcase_15 | AC | 1,026 ms
163,876 KB |
testcase_16 | AC | 1,422 ms
161,772 KB |
testcase_17 | AC | 1,457 ms
163,848 KB |
testcase_18 | AC | 1,428 ms
163,956 KB |
testcase_19 | AC | 849 ms
163,956 KB |
testcase_20 | AC | 1,075 ms
163,080 KB |
testcase_21 | AC | 1,387 ms
221,872 KB |
testcase_22 | AC | 1,223 ms
163,208 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using System.IO; using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>; using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>; class Program { struct Nod { public long[][] A, B, S; } static Nod init() { var mt = new mymath(); var ret = new Nod(); ret.A = mt.E(3); ret.B = mt.E(2); ret.S = new long[2][]; for (int i = 0; i < 2; i++) ret.S[i] = new long[3]; return ret; } static Nod init(int i) { var ret = init(); for (int j = 0; j < 2; j++) for (int k = 0; k < 3; k++) ret.S[j][k] = i * 6 + j * 3 + k; return ret; } static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; const int M = 1000000007; const double eps = 1e-9; static int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { var sc = new Scan(); var mt = new mymath(); int n = sc.Int; var sgA = new Segtree<long[][]>(n + 2, (x, y) => mt.mul(y, x), mt.E(3)); var sgB = new Segtree<long[][]>(n + 2, (x, y) => mt.mul(x, y), mt.E(2)); var sgP = new Segtree<Nod>(n + 2, (x, y) => { Nod ret = new Nod(); ret.A = mt.mul(y.A, x.A); ret.B = mt.mul(x.B, y.B); ret.S = mt.add(mt.mul(x.B, mt.mul(y.S, x.A)), x.S); return ret; }, init()); for (int i = 0; i <= n; i++) sgP.assign(i, init(i)); sgP.all_update(); var a = sc.LongArr; var b = sc.LongArr; int q = sc.Int; for (int i = 0; i < q; i++) { var inp = sc.StrArr; int ind = int.Parse(inp[1]); Nod nod = sgP.look(ind); switch (inp[0]) { case "a": for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) nod.A[j][k] = int.Parse(inp[j * 3 + k + 2]); sgA.update(ind, nod.A); sgP.update(ind, nod); break; case "b": for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) nod.B[j][k] = int.Parse(inp[j * 2 + k + 2]); sgB.update(ind, nod.B); sgP.update(ind, nod); break; case "ga": Prt(mt.mul(sgA.run(0, ind), a)); break; case "gb": Prt(mt.add(mt.mul(sgB.run(ind + 1, n + 1), b), mt.mul(sgP.run(ind + 1, n + 1).S, mt.mul(sgA.run(0, ind + 1), a)))); break; } } sw.Flush(); } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static T Max<T>(params T[] a) => a.Max(); static T Min<T>(params T[] a) => a.Min(); static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a)); static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a)); static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a)); static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a)); } static class ex { public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } public static class Operator<T> { static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x"); static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y"); public static readonly Func<T, T, T> Add = Lambda(Expression.Add); public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract); public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply); public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide); public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus); public static readonly Func<T, T> Negate = Lambda(Expression.Negate); public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile(); } class ScanCHK : Scan { public new string Str { get { var s = Console.ReadLine(); return s == s.Trim() ? s : ""; } } } class Scan { public int Int => int.Parse(Str); public long Long => long.Parse(Str); public double Double => double.Parse(Str); public string Str => Console.ReadLine().Trim(); public int[] IntArr => StrArr.Select(int.Parse).ToArray(); public long[] LongArr => StrArr.Select(long.Parse).ToArray(); public double[] DoubleArr => StrArr.Select(double.Parse).ToArray(); public string[] StrArr => Str.Split(); bool eq<T, U>() => typeof(T).Equals(typeof(U)); T ct<T, U>(U inp) => (T)Convert.ChangeType(inp, typeof(T)); T cv<T>(string inp) => eq<T, int>() ? ct<T, int>(int.Parse(inp)) : eq<T, long>() ? ct<T, long>(long.Parse(inp)) : eq<T, double>() ? ct<T, double>(double.Parse(inp)) : eq<T, char>() ? ct<T, char>(inp[0]) : ct<T, string>(inp); public void Multi<T>(out T a) => a = cv<T>(Str); public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } class mymath { long Mod = 1000000007; public void setMod(long m) => Mod = m; public bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public long[][] trans(long[][] A) { int n = A[0].Length, m = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public long[] add(long[] x, long[] y) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod; return ret; } public long[][] add(long[][] A, long[][] B) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]); return ret; } public long pow(long a, long b) { if (a >= Mod) return pow(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public long inv(long a) => pow(a, Mod - 2); public long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b != 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } public long lcm(long a, long b) => a * (b / gcd(a, b)); public long comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; int[] numer = new int[r], denom = new int[r]; for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; } for (int p = 2; p <= r; p++) { int piv = denom[p - 1]; if (piv > 1) { int ofst = (n - r) % p; for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; } } } long ret = 1; for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod; return ret; } } class Segtree<T> { int n, s, t; T[] tr; Func<T, T, T> f; T exnum; // expect : f(ex, ex) = ex public Segtree(int m, Func<T, T, T> f, T ex) { this.f = f; this.exnum = ex; n = 1; while (n < m) n <<= 1; tr = new T[(n << 1) - 1]; for (int i = 0; i < tr.Length; i++) tr[i] = ex; } public Segtree(int m, T ini, Func<T, T, T> f, T ex) : this(m, f, ex) { for (int i = 0; i < m; ++i) tr[i + n - 1] = ini; all_update(); } public void assign(int j, T x) => tr[j + n - 1] = x; public void update(int j, T x) { int i = j + n - 1; tr[i] = x; while (i > 0) { i = i - 1 >> 1; tr[i] = f(tr[i << 1 | 1], tr[i + 1 << 1]); } } public void all_update() { for (int i = n - 2; i >= 0; i--) tr[i] = f(tr[i << 1 | 1], tr[i + 1 << 1]); } public T look(int i) => tr[i + n - 1]; // [s, t) public T run(int s, int t) { this.s = s; this.t = t; return q(0, 0, n); } T q(int k, int l, int r) => r <= s || t <= l ? exnum : s <= l && r <= t ? tr[k] : f(q(k << 1 | 1, l, l + r >> 1), q(k + 1 << 1, l + r >> 1, r)); }