結果
| 問題 |
No.9005 実行時間/使用メモリテスト(テスト用)
|
| ユーザー |
|
| 提出日時 | 2016-10-31 20:25:25 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 11,591 bytes |
| コンパイル時間 | 3,224 ms |
| コンパイル使用メモリ | 211,360 KB |
| 実行使用メモリ | 24,412 KB |
| 最終ジャッジ日時 | 2024-11-25 00:07:48 |
| 合計ジャッジ時間 | 9,925 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 4 TLE * 1 |
ソースコード
#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include <bits/stdc++.h>
typedef __int128_t int128;
// worst: 1152921504606839475 300 300 => 610505353
// 1000000000000000000 300 300 => 817328043
// 今回は不使用
class NumberTheoreticTransform {
public:
int mod;
int root;
public:
NumberTheoreticTransform(int mod, int root) : mod(mod), root(root) { }
std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
int s = a.size() + b.size() - 1;
int t = 1;
while (t < s) t *= 2;
for (int i = 0; i < a.size(); i++) a[i] %= mod;
for (int i = 0; i < b.size(); i++) b[i] %= mod;
a.resize(t);
b.resize(t);
ntt(a);
ntt(b);
for (int i = 0; i < a.size(); i++) a[i] = mul(a[i], b[i]);
ntt(a, true);
a.resize(s);
return a;
}
private:
int mul(int x, int y) {
return int64_t(x) * y % mod;
}
int add(int x, int y) {
return (x += y) >= mod ? x - mod : x;
}
int pow(int x, int y) {
int res = 1;
for (; y > 0; x = mul(x, x), y >>= 1) if (y & 1) res = mul(res, x);
return res;
}
int inv(int x) {
return pow(x, mod - 2);
}
void ntt(std::vector<int> &a, bool rev = false) {
int n = a.size();
int h = 0;
for (int i = 0; 1 << i < n; i++) h++;
for (int i = 0; i < n; i++) {
int j = 0;
for (int k = 0; k < h; k++) j |= (i >> k & 1) << (h - 1 - k);
if (i < j) std::swap(a[i], a[j]);
}
for (int i = 1; i < n; i *= 2) {
int w = pow(root, (mod - 1) / (i * 2));
if (rev) w = inv(w);
for (int j = 0; j < n; j += i * 2) {
int wn = 1;
for (int k = 0; k < i; k++) {
int s = a[j + k + 0];
int t = mul(a[j + k + i], wn);
a[j + k + 0] = add(s, t);
a[j + k + i] = add(s, mod - t);
wn = mul(wn, w);
}
}
}
int v = inv(n);
if (rev) for (int i = 0; i < n; i++) a[i] = mul(a[i], v);
}
};
// 今回は不使用
// mod を取りつつ Karatsuba 法
class Karatsuba {
private:
int mod;
public:
Karatsuba(int mod) : mod(mod) {}
std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
int s = std::max<int>(a.size(), b.size());
int t = 1;
int u = a.size() + b.size() - 1;
while (t < s) t *= 2;
a.resize(t);
b.resize(t);
std::vector<int> c(t * 6);
mul(a.data(), b.data(), t, c.data());
c.resize(u);
return c;
}
private:
void mul(int a[], int b[], int n, int res[]) {
int *a0 = a, *a1 = a + n / 2;
int *b0 = b, *b1 = b + n / 2;
int *c0 = res + n * 5, *c1 = res + n * 5 + n / 2;
int *x0 = res, *x1 = res + n, *x2 = res + n * 2;
if (n <= 8) {
for (int i = 0; i < n * 2; i++) res[i] = 0;
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) upd(res[i + j], int64_t(a[i]) * b[j] % mod);
return;
}
for (int i = 0; i < n / 2; i++) {
c0[i] = add(a0[i], a1[i]);
c1[i] = add(b0[i], b1[i]);
}
mul(a0, b0, n / 2, x0);
mul(a1, b1, n / 2, x1);
mul(c0, c1, n / 2, x2);
for (int i = 0; i < n; i++) upd(x2[i], mod - add(x0[i], x1[i]));
for (int i = 0; i < n; i++) upd(res[i + n / 2], x2[i]);
}
int add(int x, int y) {
return (x += y) >= mod ? x - mod : x;
}
void upd(int &x, int y) {
x = add(x, y);
}
};
// int128 を使って mod を省いた Karatsuba 法
class Karatsuba128 {
private:
int mod;
public:
Karatsuba128(int mod) : mod(mod) {}
std::vector<int> mul(std::vector<int> a, std::vector<int> b, int pmod = -1) {
if (pmod == -1) pmod = a.size() + b.size() - 1;
else {
if (a.size() > pmod) a.resize(pmod);
if (b.size() > pmod) b.resize(pmod);
}
int s = std::max<int>(a.size(), b.size());
int t = 1;
while (t < s) t *= 2;
std::vector<int128> A(t), B(t), C(t * 6);
for (int i = 0; i < a.size(); i++) A[i] = a[i];
for (int i = 0; i < b.size(); i++) B[i] = b[i];
mul(A.data(), B.data(), t, C.data());
std::vector<int> c(pmod);
for (int i = 0; i < std::min<int>(pmod, C.size()); i++) {
c[i] = C[i] % mod;
if (c[i] < 0) c[i] += mod;
}
return c;
}
private:
void mul(int128 a[], int128 b[], int n, int128 res[]) {
if (n <= 8) {
memset(res, 0, sizeof(res[0]) * n * 2);
for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {
res[i + j] += a[i] * b[j];
}
return;
}
int128 *a0 = a, *a1 = a + n / 2;
int128 *b0 = b, *b1 = b + n / 2;
int128 *c0 = res + n * 5, *c1 = res + n * 5 + n / 2;
int128 *x0 = res, *x1 = res + n, *x2 = res + n * 2;
for (int i = 0; i < n / 2; i++) {
c0[i] = a0[i] + a1[i];
c1[i] = b0[i] + b1[i];
}
mul(a0, b0, n / 2, x0);
mul(a1, b1, n / 2, x1);
mul(c0, c1, n / 2, x2);
for (int i = 0; i < n; i++) x2[i] -= x0[i] + x1[i];
for (int i = 0; i < n; i++) res[i + n / 2] += x2[i];
}
};
// 今回は不使用
// 3種の mod を使って CRT で復元する畳み込み
class AnyModConvolution {
private:
std::vector<NumberTheoreticTransform> ntt;
std::vector<int> mods;
std::vector<int> roots;
int mod;
public:
AnyModConvolution(int mod) : mod(mod) {
mods.push_back(469762049);
mods.push_back(167772161);
mods.push_back(754974721);
roots.push_back(3);
roots.push_back(3);
roots.push_back(11);
for (int i = 0; i < 3; i++) {
ntt.emplace_back(mods[i], roots[i]);
}
}
std::vector<int> mul(std::vector<int> a, std::vector<int> b) {
std::vector<std::vector<int>> res(ntt.size());
for (int i = 0; i < ntt.size(); i++) {
res[i] = ntt[i].mul(a, b);
}
for (int i = 0; i < res[0].size(); i++) {
std::vector<int> x;
for (int j = 0; j < ntt.size(); j++) {
x.push_back(res[j][i]);
}
res[0][i] = linear_congruence(x, mods, mod);
}
return res[0];
}
int pow(int64_t x, int64_t y, int mod) {
int64_t res = 1;
for (; y > 0; x = x * x % mod, y >>= 1) if (y & 1) res = res * x % mod;
return res;
}
int inv(int x, int mod) {
return pow(x, mod - 2, mod);
}
int linear_congruence(std::vector<int> x, std::vector<int> m, int mod) {
m.push_back(mod);
std::vector<int> u(x.size());
for (int i = 0; i <= x.size(); i++) {
int64_t s = 0, v = 1;
for (int j = 0; j < i; j++) {
(s += u[j] * v) %= m[i];
(v *= m[j]) %= m[i];
}
if (i == x.size()) return s;
u[i] = (x[i] + m[i] - s) * inv(v, m[i]) % m[i];
}
abort();
return -1;
}
};
class AnyModPolynomial {
private:
int mod;
Karatsuba128 kara128;
std::vector<int> t;
public:
AnyModPolynomial(int mod) : mod(mod), kara128(mod) {}
std::vector<int> mul(const std::vector<int> &a, const std::vector<int> &b) {
return kara128.mul(a, b);
}
std::vector<int> add(const std::vector<int> &a, const std::vector<int> &b) {
std::vector<int> res(std::max<int>(a.size(), b.size()));
for (int i = 0; i < res.size(); i++) {
res[i] = add(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
}
return res;
}
std::vector<int> sub(const std::vector<int> &a, const std::vector<int> &b) {
std::vector<int> res(std::max<int>(a.size(), b.size()));
for (int i = 0; i < res.size(); i++) {
res[i] = add(i < a.size() ? a[i] : 0, i < b.size() ? (mod - b[i]) : 0);
}
return res;
}
std::vector<int> quot(std::vector<int> a, std::vector<int> b) {
if (a.size() < b.size()) return{ 0 };
while (b.back() == 0) b.pop_back();
int s = a.size() - b.size() + 1;
while (!is_pow2(a.size() - b.size() + 1)) a.push_back(0);
int n = a.size() - b.size() + 1;
if (t.empty()) t = inv(rev(b), n);
std::vector<int> q = rev(mul(rev(a), t, n));
q.resize(s);
return q;
}
std::vector<int> rem(std::vector<int> a, std::vector<int> b) {
while (b.back() == 0) b.pop_back();
std::vector<int> r = sub(a, mul(quot(a, b), b, b.size() - 1));
r.resize(b.size() - 1);
return r;
}
std::vector<int> remmul(std::vector<int> a, std::vector<int> b, std::vector<int> c) {
return rem(mul(a, b), c);
}
private:
int pow(int64_t x, int64_t y, int mod) {
int64_t res = 1;
for (; y > 0; x = x * x % mod, y >>= 1) if (y & 1) res = res * x % mod;
return res;
}
int inv(int x, int mod) {
return pow(x, mod - 2, mod);
}
int is_pow2(int n) {
return (n & (n - 1)) == 0;
}
int mul(int x, int y) {
return int64_t(x) * y % mod;
}
int add(int x, int y) {
return (x += y) >= mod ? x - mod : x;
}
void upd(int &x, int y) {
x = add(x, y);
}
int pow(int x, int y) {
int res = 1;
for (; y > 0; x = mul(x, x), y >>= 1) if (y & 1) res = mul(res, x);
return res;
}
int inv(int x) {
return pow(x, mod - 2);
}
std::vector<int> mul(std::vector<int> a, std::vector<int> b, int n) {
return kara128.mul(a, b, n);
}
std::vector<int> inv(std::vector<int> a, int n) {
assert(is_pow2(n));
std::vector<int> b(n);
b[0] = inv(a[0]);
for (int i = 0; (1 << i) < a.size(); i++) {
b = sub(add(b, b), mul(mul(b, b, n), a, n));
}
return b;
}
std::vector<int> rev(std::vector<int> a) {
reverse(a.begin(), a.end());
return a;
}
};
const int mod = 1e9 + 7;
int64_t dp[2][301][4000], way[10000];
void calc(int64_t dp[301][4000], int64_t n, std::vector<int> dice) {
dp[0][0] = 1;
for (int k = 0; k < dice.size(); k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < 3910; j++) {
(dp[i + 1][j + dice[k]] += dp[i][j]) %= mod;
}
}
}
}
int main() {
using namespace std;
int xxx;
cin >> xxx;
if (xxx != 1) return 0;
int64_t N, P, C;
// cin >> N >> P >> C;
N = 1000000000000000000LL;
P = 300;
C = 300;
calc(dp[0], P, { 2, 3, 5, 7, 11, 13 });
calc(dp[1], C, { 4, 6, 8, 9, 10, 12 });
for (int i = 0; i <= 3900; i++) {
for (int j = 0; j <= 3900; j++) {
(way[i + j] += dp[0][P][i] * dp[1][C][j]) %= mod;
}
}
int64_t K = P * 13 + C * 12 + 1;
vector<int> a(K + 1);
for (int i = 0; i < K; i++) a[i] = mod - way[K - i];
a[K] = 1;
int64_t M = N + K - 1;
AnyModPolynomial poly(mod);
vector<int> f = { 1 }, g = { 0, 1 };
for (; M > 0; g = poly.remmul(g, g, a), M >>= 1) if (M & 1) f = poly.remmul(f, g, a);
int64_t ans = 0;
for (int i = 0; i < K; i++) ans += int64_t(f[i]);
cerr << ans % mod << endl;
cout << 0 << endl;
}