結果

問題 No.529 帰省ラッシュ
ユーザー ei1333333
提出日時 2016-11-01 16:43:11
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 660 ms / 4,500 ms
コード長 7,302 bytes
コンパイル時間 2,603 ms
コンパイル使用メモリ 202,868 KB
実行使用メモリ 54,016 KB
最終ジャッジ日時 2024-12-16 02:15:26
合計ジャッジ時間 12,878 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
struct UnionFind
{
vector< int > data;
UnionFind(size_t sz)
{
data.assign(sz, -1);
}
void unite(int x, int y)
{
x = find(x);
y = find(y);
if(x != y) {
if(data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
}
}
int find(int k)
{
if(data[k] < 0) return (k);
return (data[k] = find(data[k]));
}
};
struct BiConnectedComponents
{
UnionFind uf;
vector< vector< int > > g;
vector< pair< int, int > > edges;
vector< int > used, ord, low, comp;
BiConnectedComponents(size_t v) : uf(v), g(v), used(v, 0), comp(v), ord(v), low(v)
{
}
void add_edge(int x, int y)
{
g[x].push_back(y);
g[y].push_back(x);
edges.push_back(minmax(x, y));
}
void dfs(int idx, int &k, int par = -1)
{
used[idx] = true;
ord[idx] = k++;
low[idx] = ord[idx];
for(auto &to : g[idx]) {
if(!used[to]) {
dfs(to, k, idx);
low[idx] = min(low[idx], low[to]);
if(ord[idx] >= low[to]) uf.unite(idx, to);
} else if(to != par) {
low[idx] = min(low[idx], ord[to]);
}
}
}
int operator[](int k)
{
return (comp[k]);
}
size_t size()
{
return (g.size());
}
void build(vector< vector< int > > &t)
{
int kk = 0;
dfs(0, kk);
int ptr = 0;
vector< int > cc(g.size());
for(int i = 0; i < g.size(); i++) {
if(i == uf.find(i)) cc[i] = ptr++;
}
t.resize(ptr);
for(int i = 0; i < g.size(); i++) {
comp[i] = cc[uf.find(i)];
}
for(auto &e : edges) {
int x = comp[e.first], y = comp[e.second];
if(x == y) continue;
t[x].push_back(y);
t[y].push_back(x);
}
}
};
vector< vector< int > > graph;
struct CentroidPathDecomposition
{
struct Centroid
{
int ParIndex, ParDepth, Deep;
vector< int > node;
inline int size()
{
return (node.size());
}
inline int &operator[](int k)
{
return (node[k]);
}
inline pair< int, int > Up()
{
return (make_pair(ParIndex, ParDepth));
}
};
vector< int > SubTreeSize, NextPath;
vector< int > TreeIndex, TreeDepth;
vector< Centroid > Centroids;
void BuildSubTreeSize()
{
stack< pair< int, int > > s;
s.push({0, -1});
while(!s.empty()) {
auto p = s.top();
s.pop();
if(~SubTreeSize[p.first]) {
NextPath[p.first] = -1;
for(auto &to : graph[p.first]) {
if(p.second == to) continue;
SubTreeSize[p.first] += SubTreeSize[to];
if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) {
NextPath[p.first] = to;
}
}
} else {
s.push(p);
SubTreeSize[p.first] = 1;
for(auto &to : graph[p.first]) {
if(p.second != to) s.push({to, p.first});
}
}
}
}
void BuildPath()
{
stack< pair< int, int > > s;
Centroids.push_back((Centroid) {-1, -1, 0});
s.push({0, -1});
TreeIndex[0] = 0;
while(!s.empty()) {
auto p = s.top();
s.pop();
TreeDepth[p.first] = Centroids[TreeIndex[p.first]].size();
for(auto &to : graph[p.first]) {
if(p.second != to) {
if(to == NextPath[p.first]) { // Centroid-Path
TreeIndex[to] = TreeIndex[p.first];
} else { // Not Centroid-Path
TreeIndex[to] = Centroids.size();
Centroids.push_back((Centroid) {TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1});
}
s.push({to, p.first});
}
}
Centroids[TreeIndex[p.first]].node.push_back(p.first);
}
}
void Build()
{
BuildSubTreeSize();
BuildPath();
}
inline int size()
{
return (Centroids.size());
}
inline pair< int, int > Information(int idx)
{
return (make_pair(TreeIndex[idx], TreeDepth[idx]));
}
inline Centroid &operator[](int k)
{
return (Centroids[k]);
}
inline int LCA(int a, int b) //
{
int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
tie(TreeIdxA, TreeDepthA) = Information(a);
tie(TreeIdxB, TreeDepthB) = Information(b);
while(TreeIdxA != TreeIdxB) {
if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
} else {
tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
}
}
if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
return (Centroids[TreeIdxA][TreeDepthA]);
}
CentroidPathDecomposition(int SZ)
{
SubTreeSize.assign(SZ, -1);
NextPath.resize(SZ);
TreeIndex.resize(SZ);
TreeDepth.resize(SZ);
}
int getMax(int a, int b);
};
struct SegmentTree
{
vector< int > seg;
int sz;
SegmentTree(int n)
{
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz - 1, -1);
}
int rmq(int a, int b, int k, int l, int r)
{
if(a >= r || b <= l) return (-1);
if(a <= l && r <= b) return (seg[k]);
return (max(rmq(a, b, 2 * k + 1, l, (l + r) >> 1),
rmq(a, b, 2 * k + 2, (l + r) >> 1, r)));
}
int rmq(int a, int b)
{
return (rmq(a, b, 0, 0, sz));
}
void update(int k, int x)
{
k += sz - 1;
seg[k] = x;
while(k > 0) {
k = (k - 1) >> 1;
seg[k] = max(seg[2 * k + 1], seg[2 * k + 2]);
}
}
};
vector< SegmentTree > segs;
CentroidPathDecomposition *press;
void update(int idx, int v)
{
int treeIdx, treeDepth;
tie(treeIdx, treeDepth) = press->Information(idx);
segs[treeIdx].update(treeDepth, v);
}
int CentroidPathDecomposition::getMax(int a, int b)
{
int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB, ret = -1;
tie(TreeIdxA, TreeDepthA) = Information(a);
tie(TreeIdxB, TreeDepthB) = Information(b);
while(TreeIdxA != TreeIdxB) {
if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
ret = max(ret, segs[TreeIdxA].rmq(0, TreeDepthA + 1));
tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
} else {
ret = max(ret, segs[TreeIdxB].rmq(0, TreeDepthB + 1));
tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
}
}
if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
ret = max(ret, segs[TreeIdxA].rmq(TreeDepthA, TreeDepthB + 1));
return (ret);
}
int main()
{
int N, M, Q;
cin >> N >> M >> Q;
BiConnectedComponents bc(N);
for(int i = 0; i < M; i++) {
int A, B;
cin >> A >> B;
bc.add_edge(--A, --B);
}
bc.build(graph);
press = new CentroidPathDecomposition(graph.size());
press->Build();
for(int i = 0; i < press->size(); i++) {
segs.push_back(SegmentTree((*press)[i].size()));
}
vector< priority_queue< int > > que(graph.size());
map< int, int > pos;
for(int i = 0; i < Q; i++) {
int T, A, B;
cin >> T >> A >> B;
if(T == 1) {
A = bc[--A];
assert(pos.count(B) == 0);
pos[B] = A;
que[A].push(B);
if(que[A].top() == B) update(A, que[A].top());
} else {
int value = press->getMax(bc[--A], bc[--B]);
cout << value << endl;
if(value >= 1) {
int idx = pos[value];
que[idx].pop();
update(idx, que[idx].empty() ? -1 : que[idx].top());
}
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0