結果
| 問題 |
No.444 旨味の相乗効果
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2016-11-11 23:23:43 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4 ms / 2,500 ms |
| コード長 | 4,930 bytes |
| コンパイル時間 | 2,288 ms |
| コンパイル使用メモリ | 177,128 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-24 20:49:19 |
| 合計ジャッジ時間 | 2,793 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 23 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll;
template<typename T, typename U> static void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> static void amax(T &x, U y) { if(x < y) x = y; }
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt() : x(0) {}
ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
signed a = x, b = MOD, u = 1, v = 0;
while(b) {
signed t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < 0) u += Mod;
ModInt res; res.x = (unsigned)u;
return res;
}
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while(k) {
if(k & 1) r *= a;
a *= a;
k >>= 1;
}
return r;
}
typedef ModInt<1000000007> mint;
#pragma region for precomputing
int berlekampMassey(const vector<mint> &s, vector<mint> &C) {
int N = (int)s.size();
C.assign(N + 1, mint());
vector<mint> B(N + 1, mint());
C[0] = B[0] = 1;
int degB = 0;
vector<mint> T;
int L = 0, m = 1;
mint b = 1;
for(int n = 0; n < N; ++ n) {
mint d = s[n];
for(int i = 1; i <= L; ++ i)
d += C[i] * s[n - i];
if(d == mint()) {
++ m;
} else {
if(2 * L <= n)
T.assign(C.begin(), C.begin() + (L + 1));
mint coeff = -d * b.inverse();
for(int i = 0; i <= degB; ++ i)
C[m + i] += coeff * B[i];
if(2 * L <= n) {
L = n + 1 - L;
B.swap(T);
degB = (int)B.size() - 1;
b = d;
m = 1;
} else {
++ m;
}
}
}
C.resize(L + 1);
return L;
}
void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) {
int n2 = (int)a.size(), n = n2 / 2;
assert(n2 % 2 == 0);
int L = berlekampMassey(a, phi);
reverse(phi.begin(), phi.begin() + (L + 1));
}
#pragma endregion
mint linearlyRecurrentSequenceValue(long long K, const vector<mint> &initValues, const vector<mint> &annPoly) {
assert(K >= 0);
if(K < (int)initValues.size())
return initValues[(int)K];
int d = (int)annPoly.size() - 1;
assert(d >= 0);
assert(annPoly[d].get() == 1);
assert(d <= (int)initValues.size());
if(d == 0)
return mint();
vector<mint> coeffs(d), square;
coeffs[0] = 1;
int l = 0;
while((K >> l) > 1) ++ l;
for(; l >= 0; -- l) {
square.assign(d * 2 - 1, mint());
for(int i = 0; i < d; ++ i)
for(int j = 0; j < d; ++ j)
square[i + j] += coeffs[i] * coeffs[j];
for(int i = d * 2 - 2; i >= d; -- i) {
mint c = square[i];
if(c.x == 0) continue;
for(int j = 0; j < d; ++ j)
square[i - d + j] -= c * annPoly[j];
}
for(int i = 0; i < d; ++ i)
coeffs[i] = square[i];
if(K >> l & 1) {
mint lc = coeffs[d - 1];
for(int i = d - 1; i >= 1; -- i)
coeffs[i] = coeffs[i - 1] - lc * annPoly[i];
coeffs[0] = mint() - lc * annPoly[0];
}
}
mint res;
for(int i = 0; i < d; ++ i)
res += coeffs[i] * initValues[i];
return res;
}
mint linearlyRecurrentSequenceValue(long long K, const pair<vector<mint>, vector<mint> > &seqPair) {
return linearlyRecurrentSequenceValue(K, seqPair.first, seqPair.second);
}
int main() {
int n; long long c;
while(~scanf("%d%lld", &n, &c)) {
vector<int> as(n);
for(int i = 0; i < n; ++ i)
scanf("%d", &as[i]);
vector<mint> dp(n * 2);
dp[0] = 1;
rep(i, n) {
mint a = as[i];
rep(j, (int)dp.size() - 1)
dp[j + 1] += dp[j] * a;
}
vector<mint> phi;
computeMinimumPolynomialForLinearlyRecurrentSequence(dp, phi);
mint ans = linearlyRecurrentSequenceValue(c, dp, phi);
rep(i, n)
ans -= mint(as[i]) ^ c;
printf("%d\n", ans.get());
}
return 0;
}
anta