結果
問題 | No.444 旨味の相乗効果 |
ユーザー | はむこ |
提出日時 | 2016-11-25 20:43:28 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,500 ms |
コード長 | 12,038 bytes |
コンパイル時間 | 2,108 ms |
コンパイル使用メモリ | 176,036 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-24 20:59:20 |
合計ジャッジ時間 | 2,672 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 3 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll; template<typename T, typename U> static void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> static void amax(T &x, U y) { if(x < y) x = y; } using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using P = pair<ll, ll>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; cout << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const unordered_map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } string bits_to_string(ll mask, ll n) { string s; rep(i, n) s += '0' + !!(mask & (1ll << i)); return s; } #define ldout fixed << setprecision(40) template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; typedef vector<mint> vmint; struct RandomModInt { default_random_engine re; uniform_int_distribution<int> dist; #ifndef _DEBUG RandomModInt() : re(random_device{}()), dist(1, mint::Mod - 1) { } #else RandomModInt() : re(), dist(1, mint::Mod - 1) { } #endif mint operator()() { mint r; r.x = dist(re); return r; } } randomModInt; void randomModIntVector(vector<mint> &v) { int n = (int)v.size(); for(int i = 0; i < n; ++ i) v[i] = randomModInt(); } ostream &operator<<(ostream &o, const mint v) { o << v.x; return o; } // GF(mo)列sから、それを生成する最小線形漸化式Cを復元する // // 入力: 漸化式が生成したGF(mo)列s // 出力: d項間漸化式の係数C (size = d+1) // 漸化式 // C_0 s_{n} + C_1 s_{n-1} + ... + C_{L} s{n-L} = 0 // がsを生成した時、Cを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1, 1000000005(-2)] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1, 1000000006(-1)] (s[1] - s[0] = 0) int berlekampMassey(const vector<mint> &s, vector<mint> &C) { int N = (int)s.size(); C.assign(N + 1, mint()); vector<mint> B(N + 1, mint()); C[0] = B[0] = 1; int degB = 0; vector<mint> T; int L = 0, m = 1; mint b = 1; for(int n = 0; n < N; ++ n) { mint d = s[n]; for(int i = 1; i <= L; ++ i) d += C[i] * s[n - i]; if(d == mint()) { ++ m; } else { if(2 * L <= n) T.assign(C.begin(), C.begin() + (L + 1)); mint coeff = -d * b.inverse(); for(int i = -1; i <= degB; ++ i) C[m + i] += coeff * B[i]; if(2 * L <= n) { L = n + 1 - L; B.swap(T); degB = (int)B.size() - 1; b = d; m = 1; } else { ++ m; } } } C.resize(L + 1); return L; } // GF(mo)列aから、それを生成する最小線形漸化式\phiを復元する // berlekampMasseyとの違いは、係数の順序が違うのと安全用のassertチェックがあること。 // // 入力: 漸化式が生成したGF(mo)列a // 出力: d項間漸化式の係数\phi (size = d+1) // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // がaを生成した時、\phiを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1000000005(-2), 1] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1000000006(-1), 1] (s[1] - s[0] = 0) void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) { assert(a.size() % 2 == 0); int L = berlekampMassey(a, phi); reverse(phi.begin(), phi.begin() + (L + 1)); } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、a[k]をinitValues(=a[0:phi.size()-1])の線形結合の係数を返す。 // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // // O(n^2 log k) void linearlyRecurrentSequenceCoeffs(long long k, const vector<mint> &phi_in, vector<mint> &coeffs) { int d = (int)phi_in.size() - 1; assert(d >= 0); assert(phi_in[d].get() == 1); coeffs = vector<mint>(d); vector<mint> square; coeffs[0] = 1; int l = 0; while ((k >> l) > 1) ++l; for (; l >= 0; --l) { square.assign(d * 2 - 1, mint()); rep(i, d) rep(j, d) square[i + j] += coeffs[i] * coeffs[j]; for (int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if (c.x == 0) continue; rep(j, d) square[i - d + j] -= c * phi_in[j]; } rep(i, d) coeffs[i] = square[i]; if (k >> l & 1) { mint lc = coeffs[d - 1]; for(int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * phi_in[i]; coeffs[0] = mint() - lc * phi_in[0]; } } } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、 // a_{k}を求める // // O(n^2 log k) // // また、副産物として、a[k]をinitVectorの線形結合として表す係数coeffが得られる // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // mint linearlyRecurrentSequenceValue(long long k, const vector<mint> &initValues, const vector<mint> &phi) { int d = phi.size() - 1; if(d == 0) return mint(); assert(d <= (int)initValues.size()); assert(k >= 0); if(k < (int)initValues.size()) return initValues[(int)k]; vector<mint> coeffs; linearlyRecurrentSequenceCoeffs(k, phi, coeffs); mint res; rep(i, d) res += coeffs[i] * initValues[i]; return res; } class matrixData { public: int n; vmint data; vmint phi; int d; matrixData(int n_arg, vmint &data_arg) { n = n_arg; data = data_arg; } void init(void) { computeMinimumPolynomialUsingBlackBoxLinearAlgebra(); } int size(void) { return n; } // vec_out is allocated in THIS function. // u, v: random vector // dp[i] = u^t A^i v virtual void productMatrixByVector(vmint& vec_out, vmint& vec_in) = 0; // Cayley-Hamilton // O(n M(n)), M(n) is computation time of "matrix by vector" // // I never care about "unlucky" situations because I'm enough lucky man. void computeMinimumPolynomialUsingBlackBoxLinearAlgebra(void) { vector<mint> dp(n * 2), u(n), v(n); randomModIntVector(u); randomModIntVector(v); vector<mint> Aiv = v; // i = 0 // enumerate 2n dp[i] vector<mint> Aiv_next; rep(i, n * 2) { rep(j, n) dp[i] += u[j] * Aiv[j]; productMatrixByVector(Aiv_next, Aiv); Aiv = Aiv_next; } computeMinimumPolynomialForLinearlyRecurrentSequence(dp, phi); d = phi.size() - 1; } // vec_out is allocated in THIS function. void computeMatrixPowerByVector(vmint &res_out, const vmint &v_in, long long k) { res_out.assign(n, mint()); vmint vec = v_in; vmint vec_next; vector<mint> coeffs; linearlyRecurrentSequenceCoeffs(k, phi, coeffs); rep(i, d) { rep(j, n) res_out[j] += coeffs[i] * vec[j]; productMatrixByVector(vec_next, vec); vec = vec_next; } } virtual ~matrixData() {} }; class myMatrixData : public matrixData { public: myMatrixData(int n_arg, vmint &data_arg) : matrixData(n_arg, data_arg) {} virtual void productMatrixByVector(vmint& vec_out, vmint& vec_in) { vec_out.resize(n); vec_out[0] = vec_in[0] * data[0]; rep(i, n-1) vec_out[i+1] = vec_out[i] + vec_in[i+1] * data[i+1]; } virtual ~myMatrixData() {} }; int main() { /* { vector<mint> s = {1, 2, 4, 8}, C; berlekampMassey(s, C); cout << s << endl; cout << C << endl; } { vector<mint> s = {1, 1, 1, 1, 1, 1}, C; berlekampMassey(s, C); cout << s << endl; cout << C << endl; } */ /* { vector<mint> a = {100, 1, 0, 0, 0, 0}, phi; computeMinimumPolynomialForLinearlyRecurrentSequence(a, phi); cout << a << endl; cout << phi << endl; } */ // BLAを介して解く int n; long long c; cin >> n >> c; vmint data; rep(i, n) { int tmp; cin >> tmp; data.push_back(tmp); } myMatrixData m = myMatrixData(n, data); m.init(); vmint res_out; vmint v_in(n, 1); m.computeMatrixPowerByVector(res_out, v_in, c); mint ans = res_out[n-1]; rep(i, n) ans -= mint(data[i]) ^ c; cout << ans << endl; return 0; }