結果

問題 No.458 異なる素数の和
ユーザー りあん
提出日時 2016-12-09 01:06:28
言語 C#
(csc 3.100.19.26603)
結果
WA   .
(最新)
AC  
(最初)
実行時間 -
コード長 9,040 Byte
コンパイル時間 1,093 ms
使用メモリ 28,328 KB
最終ジャッジ日時 2019-12-05 07:48:48

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
big1.txt AC 31 ms
16,028 KB
big2.txt AC 99 ms
18,076 KB
big3.txt AC 118 ms
16,056 KB
big4.txt AC 45 ms
13,996 KB
big5.txt AC 49 ms
13,988 KB
big6.txt AC 238 ms
24,208 KB
big7.txt AC 115 ms
20,120 KB
big8.txt AC 31 ms
13,992 KB
big9.txt AC 241 ms
26,260 KB
big10.txt AC 35 ms
16,028 KB
challenge1.txt AC 29 ms
16,012 KB
challenge2.txt AC 287 ms
28,328 KB
challenge3.txt AC 30 ms
13,968 KB
challenge4.txt AC 30 ms
13,980 KB
sample1.txt AC 31 ms
18,072 KB
sample2.txt AC 32 ms
18,056 KB
sample3.txt AC 38 ms
18,072 KB
small1.txt AC 29 ms
13,992 KB
small2.txt AC 30 ms
16,028 KB
small3.txt AC 30 ms
18,060 KB
small4.txt AC 29 ms
13,980 KB
small5.txt AC 30 ms
16,036 KB
small6.txt AC 30 ms
16,020 KB
small7.txt AC 30 ms
16,024 KB
small8.txt AC 31 ms
16,024 KB
small9.txt AC 30 ms
14,000 KB
small10.txt AC 30 ms
13,984 KB
system_test1.txt WA -
system_test2.txt WA -
system_test3.txt AC 33 ms
13,980 KB
system_test4.txt WA -
テストケース一括ダウンロード
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.3.1-beta4-19462-11 (66a912c9)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
//using System.Diagnostics;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    static Scan sc = new Scan();
//    static Scan sc = new ScanCHK();
    const int M = 1000000007;
    const double eps = 1e-9;
    static readonly int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        int n = sc.Int;
        var pr = mymath.getprimes(n);
        int sum = 0, m = 0;
        while (sum < n + 9 && m < pr.Count)
        {
            sum += pr[m++];
        }
        var dp = new int[n + 1][];
        for (int i = 0; i <= n; i++)
        {
            dp[i] = new int[m + 1];
            for (int j = 0; j <= m; j++)
                dp[i][j] = M;
        }
        for (int i = 0; i < m; i++)
        {
            dp[pr[i]][1] = i;
        }
        for (int i = 0; i < m; i++)
        {
            for (int j = 0; j <= n; j++)
            {
                for (int k = dp[j][i] + 1; k < m && j + pr[k] <= n; k++)
                {
                    dp[j + pr[k]][i + 1] = Math.Min(dp[j + pr[k]][i + 1], k);
                }
            }
        }
        for (int i = m; i > 0; i--)
        {
            if (dp[n][i] < M)
            {
                DBG(i);
                return;
            }
        }
        Prt(-1);
        sw.Flush();
    }
    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static T Max<T>(params T[] a) => a.Max();
    static T Min<T>(params T[] a) => a.Min();
    static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a));
    static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a));
    static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a));
    static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a));
}
static class ex
{
    public static string con<T>(this IEnumerable<T> a) => a.con(" ");
    public static string con<T>(this IEnumerable<T> a, string s) => string.Join(s, a);
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a)
    {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
    public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}

class ScanCHK : Scan
{
    public new string Str { get { var s = Console.ReadLine(); if (s != s.Trim()) throw new Exception(); return s; } }
}
class Scan
{
    public int Int => int.Parse(Str);
    public long Long => long.Parse(Str);
    public double Double => double.Parse(Str);
    public string Str => Console.ReadLine().Trim();
    public int[] IntArr => StrArr.Select(int.Parse).ToArray();
    public long[] LongArr => StrArr.Select(long.Parse).ToArray();
    public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
    public string[] StrArr => Str.Split();
    bool eq<T, U>() => typeof(T).Equals(typeof(U));
    T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
    T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
                       : eq<T, long>() ? ct<T, long>(long.Parse(s))
                       : eq<T, double>() ? ct<T, double>(double.Parse(s))
                       : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s);
    public void Multi<T>(out T a) => a = cv<T>(Str);
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    public static long Mod = 1000000007;
    public static bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public static bool[] sieve(int n)
    {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public static List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public static long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public static long[][] pow(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static long dot(long[] x, long[] y)
    {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public static long[][] trans(long[][] A)
    {
        int n = A[0].Length, m = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; }
        return ret;
    }
    public static long[] mul(long[][] A, long[] x)
    {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[][] mul(long[][] A, long[][] B)
    {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[] add(long[] x, long[] y)
    {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public static long[][] add(long[][] A, long[][] B)
    {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public static long pow(long a, long b)
    {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public static long inv(long a) => pow(a, Mod - 2);
    public static long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    // a x + b y = gcd(a, b)
    public static long extgcd(long a, long b, out long x, out long y)
    {
        long g = a; x = 1; y = 0;
        if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
        return g;
    }
    public static long lcm(long a, long b) => a / gcd(a, b) * b;
    public static long comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++)
        {
            int piv = denom[p - 1];
            if (piv > 1)
            {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
}
0