結果
問題 | No.463 魔法使いのすごろく🎲 |
ユーザー | りあん |
提出日時 | 2016-12-16 16:31:07 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 38 ms / 2,000 ms |
コード長 | 10,943 bytes |
コンパイル時間 | 966 ms |
コンパイル使用メモリ | 120,984 KB |
実行使用メモリ | 28,432 KB |
最終ジャッジ日時 | 2024-05-07 16:06:56 |
合計ジャッジ時間 | 3,299 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
26,288 KB |
testcase_01 | AC | 30 ms
28,388 KB |
testcase_02 | AC | 31 ms
26,392 KB |
testcase_03 | AC | 30 ms
28,268 KB |
testcase_04 | AC | 30 ms
26,136 KB |
testcase_05 | AC | 29 ms
26,224 KB |
testcase_06 | AC | 28 ms
28,396 KB |
testcase_07 | AC | 29 ms
26,520 KB |
testcase_08 | AC | 29 ms
26,256 KB |
testcase_09 | AC | 33 ms
26,488 KB |
testcase_10 | AC | 29 ms
26,264 KB |
testcase_11 | AC | 29 ms
26,644 KB |
testcase_12 | AC | 28 ms
24,500 KB |
testcase_13 | AC | 29 ms
26,136 KB |
testcase_14 | AC | 33 ms
26,220 KB |
testcase_15 | AC | 32 ms
26,284 KB |
testcase_16 | AC | 29 ms
26,640 KB |
testcase_17 | AC | 33 ms
26,260 KB |
testcase_18 | AC | 30 ms
26,416 KB |
testcase_19 | AC | 31 ms
26,412 KB |
testcase_20 | AC | 29 ms
26,468 KB |
testcase_21 | AC | 35 ms
26,420 KB |
testcase_22 | AC | 35 ms
27,628 KB |
testcase_23 | AC | 35 ms
26,512 KB |
testcase_24 | AC | 36 ms
24,372 KB |
testcase_25 | AC | 36 ms
26,132 KB |
testcase_26 | AC | 35 ms
26,392 KB |
testcase_27 | AC | 36 ms
26,132 KB |
testcase_28 | AC | 35 ms
26,616 KB |
testcase_29 | AC | 37 ms
28,432 KB |
testcase_30 | AC | 38 ms
26,156 KB |
testcase_31 | AC | 35 ms
26,132 KB |
testcase_32 | AC | 34 ms
26,164 KB |
testcase_33 | AC | 34 ms
26,476 KB |
testcase_34 | AC | 34 ms
28,268 KB |
testcase_35 | AC | 29 ms
26,260 KB |
testcase_36 | AC | 28 ms
26,344 KB |
testcase_37 | AC | 31 ms
28,388 KB |
testcase_38 | AC | 24 ms
26,252 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using System.IO; //using System.Diagnostics; using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>; using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>; class Program { static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; static Scan sc = new Scan(); // static Scan sc = new ScanCHK(); const int M = 1000000007; const double eps = 1e-9; static readonly int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { int n, m; sc.Multi(out n, out m); if (n == 2) { DBG(0); return; } var inp = sc.IntArr; var c = new double[n - 1]; for (int i = 0; i < n - 2; i++) { c[i + 1] = inp[i]; } var a = new double[n - 1][]; var ac = new double[n - 1][]; for (int i = 0; i < n - 1; i++) { a[i] = new double[n - 1]; ac[i] = new double[n - 1]; a[i][i] = m; } for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < m + i + 1; j++) { if (j == n - 1) continue; a[i][j < n - 1 ? j : n * 2 - 2 - j] -= 1; ac[i][j < n - 1 ? j : n * 2 - 2 - j] += 1; } } var p = mymath.mul(inv(a), mymath.mul(ac, c)); var q = new double[n - 1]; for (int i = n - 2; i >= 0; i--) { if (i + m >= n - 1) { q[i] = 0; continue; } q[i] = p[i]; for (int j = 1; j <= m && i + j < n - 1; j++) { q[i] = Math.Min(q[i], p[i + j] + c[i + j]); } double sum = 0; for (int j = i + 1; j < m + i + 1; j++) { if (j == n - 1) continue; sum += q[j < n - 1 ? j : n * 2 - 2 - j] + c[j < n - 1 ? j : n * 2 - 2 - j]; } q[i] = Math.Min(q[i], sum / m); } Prt(q[0]); sw.Flush(); } static double[][] inv(double[][] a) { int n = a.Length; var b = new double[n][]; var ret = new double[n][]; for (int i = 0; i < n; i++) { b[i] = a[i].copy(); ret[i] = new double[n]; ret[i][i] = 1; } for (int i = 0; i < n; i++) { double buf = 1 / b[i][i]; for (int j = 0; j < n; j++) { b[i][j] *= buf; ret[i][j] *= buf; } for (int j = 0; j < n; j++) { if (i != j) { buf = b[j][i]; for (int k = 0; k < n; k++) { b[j][k] -= b[i][k] * buf; ret[j][k] -= ret[i][k] * buf; } } } } return ret; } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static T Max<T>(params T[] a) => a.Max(); static T Min<T>(params T[] a) => a.Min(); static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a)); static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a)); static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a)); static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a)); } static class ex { public static string con<T>(this IEnumerable<T> a) => a.con(" "); public static string con<T>(this IEnumerable<T> a, string s) => string.Join(s, a); public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } static class Operator<T> { static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x"); static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y"); public static readonly Func<T, T, T> Add = Lambda(Expression.Add); public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract); public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply); public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide); public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus); public static readonly Func<T, T> Negate = Lambda(Expression.Negate); public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile(); } class ScanCHK : Scan { public new string Str { get { var s = Console.ReadLine(); if (s != s.Trim()) throw new Exception(); return s; } } } class Scan { public int Int => int.Parse(Str); public long Long => long.Parse(Str); public double Double => double.Parse(Str); public string Str => Console.ReadLine().Trim(); public int[] IntArr => StrArr.Select(int.Parse).ToArray(); public long[] LongArr => StrArr.Select(long.Parse).ToArray(); public double[] DoubleArr => StrArr.Select(double.Parse).ToArray(); public string[] StrArr => Str.Split(); bool eq<T, U>() => typeof(T).Equals(typeof(U)); T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T)); T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s)) : eq<T, long>() ? ct<T, long>(long.Parse(s)) : eq<T, double>() ? ct<T, double>(double.Parse(s)) : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s); public void Multi<T>(out T a) => a = cv<T>(Str); public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } class mymath { public static long Mod = 1000000007; public static bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public static bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public static List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public static long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public static long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static double dot(double[] x, double[] y) { int n = x.Length; double ret = 0; for (int i = 0; i < n; i++) ret += x[i] * y[i]; return ret; } public static long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public static T[][] trans<T>(T[][] A) { int n = A[0].Length, m = A.Length; var ret = new T[n][]; for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public static double[] mul(double[][] A, double[] x) { int n = A.Length; var ret = new double[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public static long[] add(long[] x, long[] y) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod; return ret; } public static long[][] add(long[][] A, long[][] B) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]); return ret; } public static long pow(long a, long b) { if (a >= Mod) return pow(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public static long inv(long a) => pow(a, Mod - 2); public static long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public static long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } public static long lcm(long a, long b) => a / gcd(a, b) * b; public static long comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; int[] numer = new int[r], denom = new int[r]; for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; } for (int p = 2; p <= r; p++) { int piv = denom[p - 1]; if (piv > 1) { int ofst = (n - r) % p; for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; } } } long ret = 1; for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod; return ret; } }