結果

問題 No.470 Inverse S+T Problem
ユーザー kimiyuki
提出日時 2016-12-19 14:48:36
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
実行時間 -
コード長 3,879 bytes
コンパイル時間 1,892 ms
コンパイル使用メモリ 118,484 KB
実行使用メモリ 814,868 KB
最終ジャッジ日時 2024-12-22 13:07:01
合計ジャッジ時間 9,385 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 24 MLE * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <vector>
#include <algorithm>
#include <array>
#include <set>
#include <map>
#include <queue>
#include <tuple>
#include <unordered_set>
#include <unordered_map>
#include <functional>
#include <cassert>
#define repeat(i,n) for (int i = 0; (i) < int(n); ++(i))
#define repeat_from(i,m,n) for (int i = (m); (i) < int(n); ++(i))
#define repeat_reverse(i,n) for (int i = (n)-1; (i) >= 0; --(i))
#define repeat_from_reverse(i,m,n) for (int i = (n)-1; (i) >= int(m); --(i))
#define whole(f,x,...) ([&](decltype((x)) whole) { return (f)(begin(whole), end(whole), ## __VA_ARGS__); })(x)
typedef long long ll;
using namespace std;
struct strongly_connected_components {
static pair<int,vector<int> > decompose(vector<vector<int> > const & g) { // adjacent list
strongly_connected_components scc(g);
return { scc.k, scc.c };
}
private:
int n;
vector<vector<int> > to, from;
explicit strongly_connected_components(vector<vector<int> > const & g) : n(g.size()), to(g), from(n) {
repeat (i,n) for (int j : to[i]) from[j].push_back(i);
decompose();
}
vector<bool> used;
vector<int> vs;
void dfs(int i) {
used[i] = true;
for (int j : to[i]) if (not used[j]) dfs(j);
vs.push_back(i);
}
int k; // number of scc
vector<int> c; // i-th vertex in g is in c_i-th vertex in scc-decomposed g
void rdfs(int i) {
used[i] = true;
c[i] = k;
for (int j : from[i]) if (not used[j]) rdfs(j);
}
void decompose() {
used.clear(); used.resize(n, false);
repeat (i,n) if (not used[i]) dfs(i);
used.clear(); used.resize(n, false);
k = 0;
c.resize(n);
reverse(vs.begin(), vs.end());
for (int i : vs) if (not used[i]) {
rdfs(i);
k += 1;
}
}
};
vector<bool> twosat(int n, vector<pair<int, int> > const & cnf) {
vector<vector<int> > g(2*n);
auto i = [&](int x) { assert (x != 0 and abs(x) <= n); return x > 0 ? x-1 : n-x-1; };
for (auto it : cnf) {
int x, y; tie(x, y) = it; // x or y
g[i(- x)].push_back(i(y)); // not x implies y
g[i(- y)].push_back(i(x)); // not y implies x
}
vector<int> component = strongly_connected_components::decompose(g).second;
vector<bool> valuation(n);
repeat_from (x,1,n+1) {
if (component[i(x)] == component[i(- x)]) { // x iff not x
return vector<bool>(); // unsat
}
valuation[x-1] = component[i(x)] > component[i(- x)]; // use components which indices are large
}
return valuation;
}
int main() {
int n; cin >> n;
vector<string> s(n); repeat (i,n) cin >> s[i];
// x_i : U_i = S + TT
// not x_i : U_i = SS + T
vector<pair<int, int> > cnf; {
map<string, vector<int> > used;
repeat (i,n) {
int x = i + 1;
used[s[i].substr(0, 1)].push_back(+ x);
used[s[i].substr(1, 2)].push_back(+ x);
used[s[i].substr(0, 2)].push_back(- x);
used[s[i].substr(2, 1)].push_back(- x);
}
for (auto it : used) {
for (int x : it.second) for (int y : it.second) if (x < y) {
// cerr << "not " << x << " or " << "not " << y << endl;
cnf.emplace_back(- x, - y); // not x or not y
}
}
}
auto result = twosat(n, cnf);
if (result.empty()) {
cout << "Impossible" << endl;
// assert (false); // ???
} else {
repeat (i,n) {
if (result[i]) {
cout << s[i][0] << ' ' << s[i][1] << s[i][2] << endl;
} else {
cout << s[i][0] << s[i][1] << ' ' << s[i][2] << endl;
}
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0