結果

問題 No.470 Inverse S+T Problem
ユーザー りあんりあん
提出日時 2016-12-20 01:10:23
言語 C#(csc)
(csc 3.9.0)
結果
WA  
(最新)
AC  
(最初)
実行時間 -
コード長 11,117 bytes
コンパイル時間 1,128 ms
コンパイル使用メモリ 120,720 KB
実行使用メモリ 33,168 KB
最終ジャッジ日時 2024-06-01 22:30:44
合計ジャッジ時間 11,615 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 35 ms
27,136 KB
testcase_01 AC 100 ms
33,016 KB
testcase_02 AC 35 ms
28,932 KB
testcase_03 AC 36 ms
27,008 KB
testcase_04 AC 33 ms
26,996 KB
testcase_05 AC 34 ms
26,864 KB
testcase_06 AC 24 ms
25,220 KB
testcase_07 AC 24 ms
25,080 KB
testcase_08 AC 25 ms
25,476 KB
testcase_09 AC 36 ms
27,052 KB
testcase_10 AC 38 ms
28,928 KB
testcase_11 WA -
testcase_12 AC 34 ms
27,060 KB
testcase_13 AC 36 ms
27,188 KB
testcase_14 AC 72 ms
31,240 KB
testcase_15 AC 514 ms
31,124 KB
testcase_16 AC 36 ms
24,880 KB
testcase_17 AC 37 ms
27,136 KB
testcase_18 AC 39 ms
29,172 KB
testcase_19 AC 629 ms
33,168 KB
testcase_20 AC 34 ms
25,008 KB
testcase_21 AC 36 ms
26,880 KB
testcase_22 AC 38 ms
29,044 KB
testcase_23 AC 37 ms
26,884 KB
testcase_24 AC 841 ms
33,160 KB
testcase_25 AC 1,931 ms
30,984 KB
testcase_26 AC 1,341 ms
33,032 KB
testcase_27 AC 1,898 ms
30,984 KB
testcase_28 AC 25 ms
25,520 KB
testcase_29 AC 24 ms
27,512 KB
testcase_30 AC 23 ms
27,516 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
using System.Text;
//using System.Diagnostics;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    static Scan sc = new Scan();
//    static Scan sc = new ScanCHK();
    const int M = 1000000007;
    const double eps = 1e-9;
    static readonly int[] dd = { 0, 1, 0, -1, 0 };

    static void Main()
    {
        int n = sc.Int;
        if (n > 52)
        {
            DBG("Impossible");
            return;
        }
        var u = new string[n];
        var s = new string[n][];
        var t = new string[n][];
        var se = new SortedSet<string>();
        for (int i = 0; i < n; i++)
        {
            u[i] = sc.Str;
            s[i] = new string[2];
            s[i][0] = u[i].Substring(0, 1);
            s[i][1] = u[i].Substring(0, 2);
            t[i] = new string[2];
            t[i][0] = u[i].Substring(1, 2);
            t[i][1] = u[i].Substring(2, 1);
            se.Add(s[i][0]);
            se.Add(s[i][1]);
            se.Add(t[i][0]);
            se.Add(t[i][1]);
        }
        var dic = new SortedDictionary<string, int>();
        int cnt = 0;
        foreach (var item in se)
        {
            dic.Add(item, cnt);
            ++cnt;
        }
        var si = new int[n][];
        var ti = new int[n][];
        for (int i = 0; i < n; i++)
        {
            si[i] = new int[2];
            si[i][0] = dic[s[i][0]];
            si[i][1] = dic[s[i][1]];
            ti[i] = new int[2];
            ti[i][0] = dic[t[i][0]];
            ti[i][1] = dic[t[i][1]];
        }

        int lim = 1000000;
        var r = new Random();
        for (int i = 0; i < lim; i++)
        {
            var used = new bool[cnt];
            var sep = new int[n];
            bool ok = true;
            for (int j = 0; j < n; j++)
            {
                if (used[si[j][0]] && used[si[j][1]] || used[ti[j][0]] && used[ti[j][1]] || used[si[j][0]] && used[ti[j][1]] || used[si[j][1]] && used[ti[j][0]])
                {
                    ok = false;
                    break;
                }
                if (used[si[j][0]] || used[ti[j][0]])
                {
                    sep[j] = 1;
                    used[si[j][1]] = true;
                    used[ti[j][1]] = true;
                    continue;
                }
                if (used[si[j][1]] || used[ti[j][1]])
                {
                    sep[j] = 0;
                    used[si[j][0]] = true;
                    used[ti[j][0]] = true;
                    continue;
                }
                int p = r.Next(2);
                sep[j] = p;
                used[si[j][p]] = true;
                used[ti[j][p]] = true;
            }
            if (ok)
            {
                for (int j = 0; j < n; j++)
                {
                    Prt(s[j][sep[j]], t[j][sep[j]]);
                }
                sw.Flush();
                return;
            }
        }

        Prt("Impossible");
        sw.Flush();
    }
    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static T Max<T>(params T[] a) => a.Max();
    static T Min<T>(params T[] a) => a.Min();
    static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a));
    static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a));
    static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a));
    static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a));
}
static class ex
{
    public static string con<T>(this IEnumerable<T> a) => a.con(" ");
    public static string con<T>(this IEnumerable<T> a, string s) => string.Join(s, a);
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a)
    {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
    public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}

class ScanCHK : Scan
{
    public new string Str { get { var s = Console.ReadLine(); if (s != s.Trim()) throw new Exception(); return s; } }
}
class Scan
{
    public int Int => int.Parse(Str);
    public long Long => long.Parse(Str);
    public double Double => double.Parse(Str);
    public string Str => Console.ReadLine().Trim();
    public int[] IntArr => StrArr.Select(int.Parse).ToArray();
    public long[] LongArr => StrArr.Select(long.Parse).ToArray();
    public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
    public string[] StrArr => Str.Split();
    bool eq<T, U>() => typeof(T).Equals(typeof(U));
    T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
    T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
                       : eq<T, long>() ? ct<T, long>(long.Parse(s))
                       : eq<T, double>() ? ct<T, double>(double.Parse(s))
                       : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s);
    public void Multi<T>(out T a) => a = cv<T>(Str);
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    public static long Mod = 1000000007;
    public static bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public static bool[] sieve(int n)
    {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public static List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public static long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public static long[][] pow(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double dot(double[] x, double[] y)
    {
        int n = x.Length;
        double ret = 0;
        for (int i = 0; i < n; i++) ret += x[i] * y[i];
        return ret;
    }
    public static long dot(long[] x, long[] y)
    {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public static T[][] trans<T>(T[][] A)
    {
        int n = A[0].Length, m = A.Length;
        var ret = new T[n][];
        for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; }
        return ret;
    }
    public static double[] mul(double[][] A, double[] x)
    {
        int n = A.Length;
        var ret = new double[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[] mul(long[][] A, long[] x)
    {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[][] mul(long[][] A, long[][] B)
    {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[] add(long[] x, long[] y)
    {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public static long[][] add(long[][] A, long[][] B)
    {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public static long pow(long a, long b)
    {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public static long inv(long a) => pow(a, Mod - 2);
    public static long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    // a x + b y = gcd(a, b)
    public static long extgcd(long a, long b, out long x, out long y)
    {
        long g = a; x = 1; y = 0;
        if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
        return g;
    }
    public static long lcm(long a, long b) => a / gcd(a, b) * b;
    public static long comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++)
        {
            int piv = denom[p - 1];
            if (piv > 1)
            {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
}
0