結果

問題 No.122 傾向と対策:門松列(その3)
ユーザー kimiyuki
提出日時 2016-12-20 18:20:17
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,755 bytes
コンパイル時間 1,151 ms
コンパイル使用メモリ 97,732 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-14 11:32:23
合計ジャッジ時間 6,671 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 2 WA * 6
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <vector>
#include <algorithm>
#include <array>
#include <set>
#include <map>
#include <queue>
#include <tuple>
#include <unordered_set>
#include <unordered_map>
#include <functional>
#include <cassert>
#define repeat(i,n) for (int i = 0; (i) < int(n); ++(i))
#define repeat_from(i,m,n) for (int i = (m); (i) < int(n); ++(i))
#define whole(f,x,...) ([&](decltype((x)) whole) { return (f)(begin(whole), end(whole), ## __VA_ARGS__); })(x)
typedef long long ll;
using namespace std;
const int mod = 1e9+7;
int main() {
const int A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6;
int x_min[7], x_max[7]; repeat (i,7) cin >> x_min[i] >> x_max[i];
auto is_in = [&](int a, int x) { return x_min[x] <= a and a <= x_max[x]; };
auto count_le = [&](int upper, int x) { return max(0, min(upper, x_max[x]) - x_min[x] + 1); };
auto count_ge = [&](int lower, int x) { return max(0, x_max[x] - max(lower, x_min[x]) + 1); };
auto mult_distict = [&](vector<int> ls) { whole(sort, ls); ll acc = 1; repeat (i,ls.size()) acc = acc * max(0, ls[i]-i) % mod; return acc; };
int max_x_max= *whole(max_element, x_max);
vector<int> acc_aceg_min(max_x_max+1);
repeat(min_aceg, max_x_max+1) {
ll acc = 0;
if (is_in(min_aceg, A)) acc += mult_distict({ count_ge(min_aceg+1, C), count_ge(min_aceg+1, E), count_ge(min_aceg+1, G) });
if (is_in(min_aceg, C)) acc += mult_distict({ count_ge(min_aceg+1, A), count_ge(min_aceg+1, E), count_ge(min_aceg+1, G) });
if (is_in(min_aceg, E)) acc += mult_distict({ count_ge(min_aceg+1, A), count_ge(min_aceg+1, C), count_ge(min_aceg+1, G) });
if (is_in(min_aceg, G)) acc += mult_distict({ count_ge(min_aceg+1, A), count_ge(min_aceg+1, C), count_ge(min_aceg+1, E) });
acc_aceg_min[min_aceg] = acc % mod;
}
vector<int> acc_aceg_max(max_x_max+1);
repeat (max_aceg, max_x_max+1) {
ll acc = 0;
if (is_in(max_aceg, A)) acc += mult_distict({ count_le(max_aceg-1, C), count_le(max_aceg-1, E), count_le(max_aceg-1, G) });
if (is_in(max_aceg, C)) acc += mult_distict({ count_le(max_aceg-1, A), count_le(max_aceg-1, E), count_le(max_aceg-1, G) });
if (is_in(max_aceg, E)) acc += mult_distict({ count_le(max_aceg-1, A), count_le(max_aceg-1, C), count_le(max_aceg-1, G) });
if (is_in(max_aceg, G)) acc += mult_distict({ count_le(max_aceg-1, A), count_le(max_aceg-1, C), count_le(max_aceg-1, E) });
acc_aceg_max[max_aceg] = acc % mod;
}
vector<int> acc_bdf_min(max_x_max+1);
repeat (min_bdf, max_x_max+1) {
ll acc = 0;
if (is_in(min_bdf, B)) acc += mult_distict({ count_ge(min_bdf+1, D), count_ge(min_bdf+1, F) });
if (is_in(min_bdf, D)) acc += mult_distict({ count_ge(min_bdf+1, B), count_ge(min_bdf+1, F) });
if (is_in(min_bdf, F)) acc += mult_distict({ count_ge(min_bdf+1, B), count_ge(min_bdf+1, D) });
acc_bdf_min[min_bdf] = acc % mod;
}
vector<int> acc_bdf_max(max_x_max+1);
repeat (max_bdf, max_x_max+1) {
ll acc = 0;
if (is_in(max_bdf, B)) acc += mult_distict({ count_le(max_bdf-1, D), count_le(max_bdf-1, F) });
if (is_in(max_bdf, D)) acc += mult_distict({ count_le(max_bdf-1, B), count_le(max_bdf-1, F) });
if (is_in(max_bdf, F)) acc += mult_distict({ count_le(max_bdf-1, B), count_le(max_bdf-1, D) });
acc_bdf_max[max_bdf] = acc % mod;
}
ll ans = 0;
repeat_from (mx,1,max_x_max+1) {
repeat_from (mn,mx+1,max_x_max+1) {
assert (mx < mn);
ans += acc_aceg_max[mx] *(ll) acc_bdf_min[mn] % mod;
ans += acc_bdf_max[mx] *(ll) acc_aceg_min[mn] % mod;
}
ans %= mod;
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0