結果

問題 No.475 最終日 - Writerの怠慢
ユーザー りあんりあん
提出日時 2016-12-25 01:43:25
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 84 ms / 2,000 ms
コード長 9,420 bytes
コンパイル時間 1,757 ms
コンパイル使用メモリ 114,792 KB
実行使用メモリ 32,540 KB
最終ジャッジ日時 2024-06-06 10:44:02
合計ジャッジ時間 3,718 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
26,380 KB
testcase_01 AC 34 ms
26,384 KB
testcase_02 AC 37 ms
28,396 KB
testcase_03 AC 40 ms
27,184 KB
testcase_04 AC 81 ms
32,540 KB
testcase_05 AC 80 ms
32,312 KB
testcase_06 AC 79 ms
32,332 KB
testcase_07 AC 82 ms
32,444 KB
testcase_08 AC 82 ms
32,180 KB
testcase_09 AC 83 ms
32,320 KB
testcase_10 AC 84 ms
32,316 KB
testcase_11 AC 82 ms
32,316 KB
testcase_12 AC 68 ms
29,652 KB
testcase_13 AC 68 ms
30,844 KB
testcase_14 AC 31 ms
25,380 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.IO;
using System.Text;
using System.Diagnostics;

using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>;
using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>;

class Program
{
    static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
    static Scan sc = new Scan();
//    static Scan sc = new ScanCHK();
    const int M = 1000000007;
    const double eps = 1e-9;
    static readonly int[] dd = { 0, 1, 0, -1, 0 };
    static void Main()
    {
        int n, s, w;
        sc.Multi(out n, out s, out w);
        var a = sc.IntArr;
        int score = a[w] + s * 100;
        a[w] = -1;
        Array.Sort(a);
        double ans = 1;
        for (int i = n - 1; i > 0; i--)
        {
            int t = score - a[i];
            if (s * 100 <= t)
                continue;
            if (s * 50 + s * 250 / (n - 1 + 4) > t)
            {
                DBG(0);
                return;
            }
            int ok = n - 1, ng = 1;
            while (ok - ng > 1)
            {
                int m = (ok + ng) >> 1;
                int u = s * 50 + s * 250 / (m + 4);
                if (u > t)
                    ng = m;
                else
                    ok = m;
            }
            if (i + 1 - ok <= 0)
            {
                DBG(0);
                return;
            }
            ans *= (i + 1 - ok) / (double)i;
        }
        Prt(ans);
        sw.Flush();
    }

    static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; }
    static T Max<T>(params T[] a) => a.Max();
    static T Min<T>(params T[] a) => a.Min();
    static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a));
    static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a));
    static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a));
    static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a));
}
static class ex
{
    public static string con<T>(this IEnumerable<T> a) => a.con(" ");
    public static string con<T>(this IEnumerable<T> a, string s) => string.Join(s, a);
    public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; }
    public static T[] copy<T>(this IList<T> a)
    {
        var ret = new T[a.Count];
        for (int i = 0; i < a.Count; i++) ret[i] = a[i];
        return ret;
    }
}
static class Operator<T>
{
    static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x");
    static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y");
    public static readonly Func<T, T, T> Add = Lambda(Expression.Add);
    public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract);
    public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply);
    public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide);
    public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus);
    public static readonly Func<T, T> Negate = Lambda(Expression.Negate);
    public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile();
    public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile();
}

class ScanCHK : Scan
{
    public new string Str { get { var s = Console.ReadLine(); if (s != s.Trim()) throw new Exception(); return s; } }
}
class Scan
{
    public int Int => int.Parse(Str);
    public long Long => long.Parse(Str);
    public double Double => double.Parse(Str);
    public string Str => Console.ReadLine().Trim();
    public int[] IntArr => StrArr.Select(int.Parse).ToArray();
    public long[] LongArr => StrArr.Select(long.Parse).ToArray();
    public double[] DoubleArr => StrArr.Select(double.Parse).ToArray();
    public string[] StrArr => Str.Split();
    bool eq<T, U>() => typeof(T).Equals(typeof(U));
    T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
    T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
                       : eq<T, long>() ? ct<T, long>(long.Parse(s))
                       : eq<T, double>() ? ct<T, double>(double.Parse(s))
                       : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s);
    public void Multi<T>(out T a) => a = cv<T>(Str);
    public void Multi<T, U>(out T a, out U b)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); }
    public void Multi<T, U, V>(out T a, out U b, out V c)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); }
    public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); }
    public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
    { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); }
}
class mymath
{
    public static long Mod = 1000000007;
    public static bool isprime(long a)
    {
        if (a < 2) return false;
        for (long i = 2; i * i <= a; i++) if (a % i == 0) return false;
        return true;
    }
    public static bool[] sieve(int n)
    {
        var p = new bool[n + 1];
        for (int i = 2; i <= n; i++) p[i] = true;
        for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false;
        return p;
    }
    public static List<int> getprimes(int n)
    {
        var prs = new List<int>();
        var p = sieve(n);
        for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i);
        return prs;
    }
    public static long[][] E(int n)
    {
        var ret = new long[n][];
        for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; }
        return ret;
    }
    public static long[][] pow(long[][] A, long n)
    {
        if (n == 0) return E(A.Length);
        var t = pow(A, n / 2);
        if ((n & 1) == 0) return mul(t, t);
        return mul(mul(t, t), A);
    }
    public static double dot(double[] x, double[] y)
    {
        int n = x.Length;
        double ret = 0;
        for (int i = 0; i < n; i++) ret += x[i] * y[i];
        return ret;
    }
    public static long dot(long[] x, long[] y)
    {
        int n = x.Length;
        long ret = 0;
        for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod;
        return ret;
    }
    public static T[][] trans<T>(T[][] A)
    {
        int n = A[0].Length, m = A.Length;
        var ret = new T[n][];
        for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; }
        return ret;
    }
    public static double[] mul(double[][] A, double[] x)
    {
        int n = A.Length;
        var ret = new double[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[] mul(long[][] A, long[] x)
    {
        int n = A.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]);
        return ret;
    }
    public static long[][] mul(long[][] A, long[][] B)
    {
        int n = A.Length;
        var Bt = trans(B);
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]);
        return ret;
    }
    public static long[] add(long[] x, long[] y)
    {
        int n = x.Length;
        var ret = new long[n];
        for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod;
        return ret;
    }
    public static long[][] add(long[][] A, long[][] B)
    {
        int n = A.Length;
        var ret = new long[n][];
        for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]);
        return ret;
    }
    public static long pow(long a, long b)
    {
        if (a >= Mod) return pow(a % Mod, b);
        if (a == 0) return 0;
        if (b == 0) return 1;
        var t = pow(a, b / 2);
        if ((b & 1) == 0) return t * t % Mod;
        return t * t % Mod * a % Mod;
    }
    public static long inv(long a) => pow(a, Mod - 2);
    public static long gcd(long a, long b)
    {
        while (b > 0) { var t = a % b; a = b; b = t; }
        return a;
    }
    // a x + b y = gcd(a, b)
    public static long extgcd(long a, long b, out long x, out long y)
    {
        long g = a; x = 1; y = 0;
        if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; }
        return g;
    }
    public static long lcm(long a, long b) => a / gcd(a, b) * b;
    public static long comb(int n, int r)
    {
        if (n < 0 || r < 0 || r > n) return 0;
        if (n - r < r) r = n - r;
        if (r == 0) return 1;
        if (r == 1) return n;
        int[] numer = new int[r], denom = new int[r];
        for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; }
        for (int p = 2; p <= r; p++)
        {
            int piv = denom[p - 1];
            if (piv > 1)
            {
                int ofst = (n - r) % p;
                for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; }
            }
        }
        long ret = 1;
        for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod;
        return ret;
    }
}
0