結果
| 問題 |
No.20 砂漠のオアシス
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2016-12-26 14:13:40 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,877 bytes |
| コンパイル時間 | 839 ms |
| コンパイル使用メモリ | 98,532 KB |
| 実行使用メモリ | 6,528 KB |
| 最終ジャッジ日時 | 2024-10-13 05:45:11 |
| 合計ジャッジ時間 | 1,799 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 16 WA * 5 |
ソースコード
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)
/**
* Dijkstra's algorithm.
* First, call add_edge() to add edges.
* Second, call solve() to calculate the length of the shortest path from source to each vertex.
* Header requirement: algorithm, queue, vector
* Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231)
*/
template<class Len = int>
class Dijkstra {
private:
int n;
std::vector<std::vector<std::pair<int, Len> > > edges;
public:
/**
* n: the number of vertices
*/
Dijkstra(int n) : n(n), edges(n) {}
/*
* from: the source of edge to add
* to: the target of edge to add
* cost: the cost of edge to add
*/
void add_edge(int from, int to, Len cost) {
edges[from].push_back(std::pair<int, Len>(to, cost));
}
/*
* This function returns an array consisting of the distances from vertex source.
*/
std::vector<Len> solve(int source) {
const Len inf = 1e8;
typedef std::pair<Len, int> pi;
std::vector<Len> d(n, inf);
std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que;
que.push(pi(0, source));
while (!que.empty()) {
pi p = que.top(); que.pop();
int idx = p.second;
if (d[idx] <= p.first) {
continue;
}
d[idx] = p.first;
for(int j = 0; j < edges[idx].size(); ++j) {
que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first));
}
}
return d;
}
};
using namespace std;
typedef long long int ll;
typedef vector<int> VI;
typedef vector<ll> VL;
typedef pair<int, int> PI;
int main(void){
int n, v, ox, oy;
cin >> n >> v >> ox >> oy;
vector<VI> l(n, VI(n));
REP(i, 0, n) {
REP(j, 0, n) {
cin >> l[i][j];
}
}
// Constructs a graph
Dijkstra<int> dijk(n * n);
REP(i, 0, n) {
REP(j, 0, n) {
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
REP(d, 0, 4) {
int tx = i + dx[d];
int ty = j + dy[d];
if (0 > tx || tx >= n || 0 > ty || ty >= n) {
continue;
}
dijk.add_edge(tx * n + ty, i * n + j, l[i][j]);
}
}
}
VI sol = dijk.solve(0);
bool reachable = false;
if (sol[n * n - 1] < v) {
reachable = true;
}
if (not reachable && ox >= 1) {
ox--, oy--;
int to_oasis = sol[ox * n + oy];
if (to_oasis < v) {
int rem = 2 * (v - to_oasis);
VI sol2 = dijk.solve(ox * n + oy);
reachable = sol2[n * n - 1] < rem;
}
}
cout << (reachable ? "YES": "NO") << endl;
}