結果
問題 | No.20 砂漠のオアシス |
ユーザー | koba-e964 |
提出日時 | 2016-12-26 14:17:05 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 52 ms / 5,000 ms |
コード長 | 2,877 bytes |
コンパイル時間 | 802 ms |
コンパイル使用メモリ | 99,492 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-13 05:45:13 |
合計ジャッジ時間 | 1,745 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 21 |
ソースコード
#include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <stack> #include <string> #include <utility> #include <vector> #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) /** * Dijkstra's algorithm. * First, call add_edge() to add edges. * Second, call solve() to calculate the length of the shortest path from source to each vertex. * Header requirement: algorithm, queue, vector * Verified by AtCoder ARC026-C (http://arc026.contest.atcoder.jp/submissions/604231) */ template<class Len = int> class Dijkstra { private: int n; std::vector<std::vector<std::pair<int, Len> > > edges; public: /** * n: the number of vertices */ Dijkstra(int n) : n(n), edges(n) {} /* * from: the source of edge to add * to: the target of edge to add * cost: the cost of edge to add */ void add_edge(int from, int to, Len cost) { edges[from].push_back(std::pair<int, Len>(to, cost)); } /* * This function returns an array consisting of the distances from vertex source. */ std::vector<Len> solve(int source) { const Len inf = 1e8; typedef std::pair<Len, int> pi; std::vector<Len> d(n, inf); std::priority_queue<pi, std::vector<pi>, std::greater<pi> > que; que.push(pi(0, source)); while (!que.empty()) { pi p = que.top(); que.pop(); int idx = p.second; if (d[idx] <= p.first) { continue; } d[idx] = p.first; for(int j = 0; j < edges[idx].size(); ++j) { que.push(pi(p.first + edges[idx][j].second, edges[idx][j].first)); } } return d; } }; using namespace std; typedef long long int ll; typedef vector<int> VI; typedef vector<ll> VL; typedef pair<int, int> PI; int main(void){ int n, v, ox, oy; cin >> n >> v >> ox >> oy; vector<VI> l(n, VI(n)); REP(i, 0, n) { REP(j, 0, n) { cin >> l[i][j]; } } // Constructs a graph Dijkstra<int> dijk(n * n); REP(i, 0, n) { REP(j, 0, n) { int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; REP(d, 0, 4) { int tx = i + dx[d]; int ty = j + dy[d]; if (0 > tx || tx >= n || 0 > ty || ty >= n) { continue; } dijk.add_edge(tx * n + ty, i * n + j, l[i][j]); } } } VI sol = dijk.solve(0); bool reachable = false; if (sol[n * n - 1] < v) { reachable = true; } if (not reachable && ox >= 1) { ox--, oy--; int to_oasis = sol[oy * n + ox]; if (to_oasis < v) { int rem = 2 * (v - to_oasis); VI sol2 = dijk.solve(oy * n + ox); reachable = sol2[n * n - 1] < rem; } } cout << (reachable ? "YES": "NO") << endl; }