結果
問題 | No.477 MVP |
ユーザー | りあん |
提出日時 | 2017-01-31 02:17:02 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 31 ms / 1,000 ms |
コード長 | 8,680 bytes |
コンパイル時間 | 4,139 ms |
コンパイル使用メモリ | 111,616 KB |
実行使用メモリ | 19,072 KB |
最終ジャッジ日時 | 2024-12-24 00:10:05 |
合計ジャッジ時間 | 2,527 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
19,072 KB |
testcase_01 | AC | 30 ms
18,816 KB |
testcase_02 | AC | 30 ms
19,072 KB |
testcase_03 | AC | 30 ms
18,816 KB |
testcase_04 | AC | 30 ms
18,944 KB |
testcase_05 | AC | 30 ms
19,072 KB |
testcase_06 | AC | 31 ms
18,816 KB |
testcase_07 | AC | 31 ms
18,816 KB |
testcase_08 | AC | 30 ms
19,072 KB |
testcase_09 | AC | 31 ms
19,072 KB |
testcase_10 | AC | 30 ms
19,072 KB |
testcase_11 | AC | 30 ms
19,072 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using System.IO; using System.Text; using System.Diagnostics; using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>; using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>; class Program { static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; static Scan sc = new Scan(); // static Scan sc = new ScanCHK(); const int M = 1000000007; const double eps = 1e-9; static readonly int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { var a = sc.LongArr; Prt(a[0] / (a[1] + 1) + 1); sw.Flush(); } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static T Max<T>(params T[] a) { return a.Max(); } static T Min<T>(params T[] a) { return a.Min(); } static void DBG<T>(IEnumerable<T> a) { Console.WriteLine(string.Join(" ", a)); } static void DBG(params object[] a) { Console.WriteLine(string.Join(" ", a)); } static void Prt<T>(IEnumerable<T> a) { sw.WriteLine(string.Join(" ", a)); } static void Prt(params object[] a) { sw.WriteLine(string.Join(" ", a)); } } static class ex { public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } static class Operator<T> { static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x"); static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y"); public static readonly Func<T, T, T> Add = Lambda(Expression.Add); public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract); public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply); public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide); public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus); public static readonly Func<T, T> Negate = Lambda(Expression.Negate); public static Func<T, T, T> Lambda(Binary op) { return Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); } public static Func<T, T> Lambda(Unary op) { return Expression.Lambda<Func<T, T>>(op(x), x).Compile(); } } class ScanCHK : Scan { public new string Str { get { var s = Console.ReadLine(); if (s != s.Trim()) throw new Exception(); return s; } } } class Scan { public int Int { get { return int.Parse(Str); } } public long Long { get { return long.Parse(Str); } } public double Double { get { return double.Parse(Str); } } public string Str { get { return Console.ReadLine().Trim(); } } public int[] IntArr { get { return StrArr.Select(int.Parse).ToArray(); } } public long[] LongArr { get { return StrArr.Select(long.Parse).ToArray(); } } public double[] DoubleArr { get { return StrArr.Select(double.Parse).ToArray(); } } public string[] StrArr { get { return Str.Split(); } } bool eq<T, U>() { return typeof(T).Equals(typeof(U)); } T ct<T, U>(U a) { return (T)Convert.ChangeType(a, typeof(T)); } T cv<T>(string s) { return eq<T, int>() ? ct<T, int>(int.Parse(s)) : eq<T, long>() ? ct<T, long>(long.Parse(s)) : eq<T, double>() ? ct<T, double>(double.Parse(s)) : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s); } public void Multi<T>(out T a) { a = cv<T>(Str); } public void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } class mymath { public static long Mod = 1000000007; public static bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public static bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public static List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public static long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public static long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static double dot(double[] x, double[] y) { int n = x.Length; double ret = 0; for (int i = 0; i < n; i++) ret += x[i] * y[i]; return ret; } public static long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public static T[][] trans<T>(T[][] A) { int n = A[0].Length, m = A.Length; var ret = new T[n][]; for (int i = 0; i < n; i++) { ret[i] = new T[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public static double[] mul(double[][] A, double[] x) { int n = A.Length; var ret = new double[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public static long[] add(long[] x, long[] y) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod; return ret; } public static long[][] add(long[][] A, long[][] B) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]); return ret; } public static long pow(long a, long b) { if (a >= Mod) return pow(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public static long inv(long a) { return pow(a, Mod - 2); } public static long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public static long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b > 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } public static long lcm(long a, long b) { return a / gcd(a, b) * b; } public static long comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; int[] numer = new int[r], denom = new int[r]; for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; } for (int p = 2; p <= r; p++) { int piv = denom[p - 1]; if (piv > 1) { int ofst = (n - r) % p; for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; } } } long ret = 1; for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod; return ret; } }