結果

問題 No.177 制作進行の宮森あおいです!
ユーザー koba-e964koba-e964
提出日時 2017-02-07 00:35:45
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 3,168 bytes
コンパイル時間 965 ms
コンパイル使用メモリ 73,964 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-06 16:27:27
合計ジャッジ時間 1,555 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In instantiation of ‘void Dinic<T>::add_edge(int, int, T) [with T = int]’:
main.cpp:122:17:   required from here
main.cpp:69:58: warning: narrowing conversion of ‘(&((Dinic<int>*)this)->Dinic<int>::graph.std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::operator[](((std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::size_type)to)))->std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size()’ from ‘std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
   69 |     graph[from].push_back((edge) {to, cap, graph[to].size()});
      |                                            ~~~~~~~~~~~~~~^~
main.cpp:70:61: warning: narrowing conversion of ‘((&((Dinic<int>*)this)->Dinic<int>::graph.std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::operator[](((std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::size_type)from)))->std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size() - 1)’ from ‘std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing]
   70 |     graph[to].push_back((edge) {from, 0, graph[from].size() - 1});
      |                                          ~~~~~~~~~~~~~~~~~~~^~~

ソースコード

diff #

#include <iostream>
#include <queue>
#include <vector>

#define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++)

using namespace std;
typedef vector<int> VI;

/**
 * Dinic's algorithm for maximum flow problem.
 * Header requirement: vector, queue
 * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810)
 *              ARC031-D(http://arc031.contest.atcoder.jp/submissions/1050071)
 *              POJ 3155(http://poj.org/problem?id=3155)
 */
template<class T = int>
class Dinic {
private:
  struct edge {
    int to;
    T cap;
    int rev; // rev is the position of reverse edge in graph[to]
  };
  std::vector<std::vector<edge> > graph;
  std::vector<int> level;
  std::vector<int> iter;
  /* Perform bfs and calculate distance from s */
  void bfs(int s) {
    level.assign(level.size(), -1);
    std::queue<int> que;
    level[s] = 0;
    que.push(s);
    while (! que.empty()) {
      int v = que.front(); que.pop();
      for (int i = 0; i < graph[v].size(); ++i) {
	edge &e = graph[v][i];
	if (e.cap > 0 && level[e.to] == -1) {
	  level[e.to] = level[v] + 1;
	  que.push(e.to);
	}
      }
    }
  }
  /* search augment path by dfs.
     if f == -1, f is treated as infinity. */
  T dfs(int v, int t, T f) {
    if (v == t) {
      return f;
    }
    for (int &i = iter[v]; i < graph[v].size(); ++i) {
      edge &e = graph[v][i];
      if (e.cap > 0 && level[v] < level[e.to]) {
	T newf = f == -1 ? e.cap : std::min(f, e.cap);
	T d = dfs(e.to, t, newf);
	if (d > 0) {
	  e.cap -= d;
	  graph[e.to][e.rev].cap += d;
	  return d;
	}
      }
    }
    return 0;
  }
public:
  /* v is the number of vertices (labeled from 0 .. v-1) */
  Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {}
  void add_edge(int from, int to, T cap) {
    graph[from].push_back((edge) {to, cap, graph[to].size()});
    graph[to].push_back((edge) {from, 0, graph[from].size() - 1});
  }
  T max_flow(int s, int t) {
    T flow = 0;
    while (1) {
      bfs(s);
      if (level[t] < 0) {
	return flow;
      }
      iter.assign(iter.size(), 0);
      T f;
      while ((f = dfs(s, t, -1)) > 0) {
	flow += f;
      }
    }
  }
  std::pair<T,std::vector<int> > max_flow_cut(int s, int t) {
    T flow = 0;
    while (1) {
      bfs(s);
      if (level[t] < 0) {
	std::vector<int> ret;
	for (int i = 0; i < graph.size(); ++i) {
	  if (level[i] < 0) {
	    ret.push_back(i);
	  }
	}
	return std::pair<T, std::vector<int> >(flow, ret);
      }
      iter.assign(iter.size(), 0);
      T f;
      while ((f = dfs(s, t, -1)) > 0) {
	flow += f;
      }
    }
  }
};



int main(void){
  int w, n;
  cin >> w >> n;
  VI j(n);
  REP(i, 0, n) { cin >> j[i]; }
  int m;
  cin >> m;
  VI c(m);
  REP(i, 0, m) { cin >> c[i]; }
  
  Dinic<int> din(n + m + 2);
  REP(i, 0, n) {
    din.add_edge(0, 2 + i, j[i]);
  }
  REP(i, 0, m) {
    din.add_edge(2 + n + i, 1, c[i]);
  }

  REP(i, 0, m) {
    int qi;
    cin >> qi;
    VI lim(n, 1e8);
    REP(j, 0, qi) {
      int x;
      cin >> x;
      x--;
      lim[x] = 0;
    }
    REP(j, 0, n) {
      din.add_edge(2 + j, 2 + n + i, lim[j]);
    }
  }
  cout << (din.max_flow(0, 1) >= w ? "SHIROBAKO" : "BANSAKUTSUKITA") << endl;
}
0