結果
問題 | No.177 制作進行の宮森あおいです! |
ユーザー | koba-e964 |
提出日時 | 2017-02-07 00:35:45 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,168 bytes |
コンパイル時間 | 965 ms |
コンパイル使用メモリ | 73,964 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-06 16:27:27 |
合計ジャッジ時間 | 1,555 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
コンパイルメッセージ
main.cpp: In instantiation of ‘void Dinic<T>::add_edge(int, int, T) [with T = int]’: main.cpp:122:17: required from here main.cpp:69:58: warning: narrowing conversion of ‘(&((Dinic<int>*)this)->Dinic<int>::graph.std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::operator[](((std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::size_type)to)))->std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size()’ from ‘std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing] 69 | graph[from].push_back((edge) {to, cap, graph[to].size()}); | ~~~~~~~~~~~~~~^~ main.cpp:70:61: warning: narrowing conversion of ‘((&((Dinic<int>*)this)->Dinic<int>::graph.std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::operator[](((std::vector<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >, std::allocator<std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> > > >::size_type)from)))->std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size() - 1)’ from ‘std::vector<Dinic<int>::edge, std::allocator<Dinic<int>::edge> >::size_type’ {aka ‘long unsigned int’} to ‘int’ [-Wnarrowing] 70 | graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); | ~~~~~~~~~~~~~~~~~~~^~~
ソースコード
#include <iostream> #include <queue> #include <vector> #define REP(i,s,n) for(int i=(int)(s);i<(int)(n);i++) using namespace std; typedef vector<int> VI; /** * Dinic's algorithm for maximum flow problem. * Header requirement: vector, queue * Verified by: ABC010-D(http://abc010.contest.atcoder.jp/submissions/602810) * ARC031-D(http://arc031.contest.atcoder.jp/submissions/1050071) * POJ 3155(http://poj.org/problem?id=3155) */ template<class T = int> class Dinic { private: struct edge { int to; T cap; int rev; // rev is the position of reverse edge in graph[to] }; std::vector<std::vector<edge> > graph; std::vector<int> level; std::vector<int> iter; /* Perform bfs and calculate distance from s */ void bfs(int s) { level.assign(level.size(), -1); std::queue<int> que; level[s] = 0; que.push(s); while (! que.empty()) { int v = que.front(); que.pop(); for (int i = 0; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[e.to] == -1) { level[e.to] = level[v] + 1; que.push(e.to); } } } } /* search augment path by dfs. if f == -1, f is treated as infinity. */ T dfs(int v, int t, T f) { if (v == t) { return f; } for (int &i = iter[v]; i < graph[v].size(); ++i) { edge &e = graph[v][i]; if (e.cap > 0 && level[v] < level[e.to]) { T newf = f == -1 ? e.cap : std::min(f, e.cap); T d = dfs(e.to, t, newf); if (d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } public: /* v is the number of vertices (labeled from 0 .. v-1) */ Dinic(int v) : graph(v), level(v, -1), iter(v, 0) {} void add_edge(int from, int to, T cap) { graph[from].push_back((edge) {to, cap, graph[to].size()}); graph[to].push_back((edge) {from, 0, graph[from].size() - 1}); } T max_flow(int s, int t) { T flow = 0; while (1) { bfs(s); if (level[t] < 0) { return flow; } iter.assign(iter.size(), 0); T f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } std::pair<T,std::vector<int> > max_flow_cut(int s, int t) { T flow = 0; while (1) { bfs(s); if (level[t] < 0) { std::vector<int> ret; for (int i = 0; i < graph.size(); ++i) { if (level[i] < 0) { ret.push_back(i); } } return std::pair<T, std::vector<int> >(flow, ret); } iter.assign(iter.size(), 0); T f; while ((f = dfs(s, t, -1)) > 0) { flow += f; } } } }; int main(void){ int w, n; cin >> w >> n; VI j(n); REP(i, 0, n) { cin >> j[i]; } int m; cin >> m; VI c(m); REP(i, 0, m) { cin >> c[i]; } Dinic<int> din(n + m + 2); REP(i, 0, n) { din.add_edge(0, 2 + i, j[i]); } REP(i, 0, m) { din.add_edge(2 + n + i, 1, c[i]); } REP(i, 0, m) { int qi; cin >> qi; VI lim(n, 1e8); REP(j, 0, qi) { int x; cin >> x; x--; lim[x] = 0; } REP(j, 0, n) { din.add_edge(2 + j, 2 + n + i, lim[j]); } } cout << (din.max_flow(0, 1) >= w ? "SHIROBAKO" : "BANSAKUTSUKITA") << endl; }