結果
問題 | No.484 収穫 |
ユーザー | どらら |
提出日時 | 2017-02-11 12:37:50 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 97 ms / 3,000 ms |
コード長 | 2,866 bytes |
コンパイル時間 | 1,282 ms |
コンパイル使用メモリ | 162,040 KB |
実行使用メモリ | 66,176 KB |
最終ジャッジ日時 | 2024-10-13 13:12:11 |
合計ジャッジ時間 | 3,153 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,632 KB |
testcase_10 | AC | 3 ms
5,760 KB |
testcase_11 | AC | 3 ms
5,760 KB |
testcase_12 | AC | 91 ms
66,048 KB |
testcase_13 | AC | 93 ms
66,176 KB |
testcase_14 | AC | 94 ms
66,048 KB |
testcase_15 | AC | 90 ms
66,048 KB |
testcase_16 | AC | 91 ms
66,176 KB |
testcase_17 | AC | 93 ms
66,048 KB |
testcase_18 | AC | 90 ms
65,920 KB |
testcase_19 | AC | 90 ms
66,176 KB |
testcase_20 | AC | 90 ms
66,048 KB |
testcase_21 | AC | 90 ms
65,920 KB |
testcase_22 | AC | 92 ms
66,048 KB |
testcase_23 | AC | 97 ms
66,176 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define REP(i,a,n) for(int i=(a); i<(int)(n); i++) #define rep(i,n) REP(i,0,n) #define FOR(it,c) for(__typeof((c).begin()) it=(c).begin(); it!=(c).end(); ++it) #define ALLOF(c) (c).begin(), (c).end() typedef long long ll; typedef unsigned long long ull; #define INF 123456789123456789LL ll L[2005][2005]; ll R[2005][2005]; int main(){ int N; cin >> N; vector<ll> A; A.push_back(-1); rep(i,N){ ll a; cin >> a; A.push_back(a); } rep(i,N+1){ rep(j,N+1){ L[i][j] = INF; R[i][j] = INF; } } //解説の写経です... /* 途中の位置sからスタートした場合を考えると、結局どちらの両端にもいかなければならないので、 最後の位置がeの場合、「s->...->1->...->N->...->e」か「s->...->N->...->1->...->e」かしている。 しかし、「s->...->1かN」の部分は次の「1かN->...->Nか1」の移動でも通過するため、 無駄に移動している。 なので、左端または右端から収穫を始める場合だけを考えればよい。 */ //未収穫範囲の区間DP //L[i][j]:=i~jが未収穫で、i-1にいる最短時間 //R[i][j]:=i~jが未収穫で、j+1にいる最短時間 //左端から収穫を開始 //nxxxxxxxxx L[2][N] = A[1]; //右端から収穫を開始 //xxxxxxxxxn R[1][N-1] = A[N]; for(int i=N-2; i>=0; i--){//未収穫範囲を狭めていく for(int j=1; j+i<=N; j++){//左からl~rをずらして決める int l=j, r=j+i; // l r //oo?xxxxxx?ooo //L n|-----| //R |-----|n //[lを収穫する] //lからrが未収穫で、l-1にいる場合、右に移動してlを収穫した場合 L[l+1][r] = min(L[l+1][r], L[l][r] + 1); //lからrが未収穫で、r+1にいる場合、左にずっと移動してlを収穫した場合 L[l+1][r] = min(L[l+1][r], R[l][r] + i + 1); //上記の2パターンでlを収穫するとき、収穫できるまで待った場合 L[l+1][r] = max(L[l+1][r], A[l]); //[rを収穫する] //lからrが未収穫で、r+1にいる場合、左に移動してrを収穫した場合 R[l][r-1] = min(R[l][r-1], R[l][r] + 1); //lからrが未収穫で、l-1にいる場合、右にずっと移動してrを収穫した場合 R[l][r-1] = min(R[l][r-1], L[l][r] + i + 1); //上記の2パターンでrを収穫するとき、収穫できるまで待った場合 R[l][r-1] = max(R[l][r-1], A[r]); } } ll ret = INF; REP(i,1,N+1){ //i~i-1、すなわち、全部収穫し終わったときのそれぞれの地点で終わった場合の最短時間の最小値 ret = min(ret, L[i][i-1]); ret = min(ret, R[i][i-1]); } cout << ret << endl; return 0; }