結果

問題 No.206 数の積集合を求めるクエリ
ユーザー 37zigen37zigen
提出日時 2017-02-17 02:39:20
言語 Java21
(openjdk 21)
結果
AC  
実行時間 1,463 ms / 7,000 ms
コード長 2,581 bytes
コンパイル時間 2,982 ms
コンパイル使用メモリ 77,616 KB
実行使用メモリ 106,728 KB
最終ジャッジ日時 2024-06-09 20:39:36
合計ジャッジ時間 23,577 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 113 ms
53,956 KB
testcase_01 AC 118 ms
54,312 KB
testcase_02 AC 105 ms
53,188 KB
testcase_03 AC 115 ms
54,272 KB
testcase_04 AC 119 ms
53,916 KB
testcase_05 AC 137 ms
54,184 KB
testcase_06 AC 211 ms
57,660 KB
testcase_07 AC 205 ms
57,456 KB
testcase_08 AC 204 ms
57,948 KB
testcase_09 AC 212 ms
58,080 KB
testcase_10 AC 117 ms
53,880 KB
testcase_11 AC 131 ms
53,852 KB
testcase_12 AC 242 ms
58,272 KB
testcase_13 AC 230 ms
58,032 KB
testcase_14 AC 243 ms
58,060 KB
testcase_15 AC 223 ms
58,036 KB
testcase_16 AC 229 ms
57,664 KB
testcase_17 AC 1,130 ms
100,240 KB
testcase_18 AC 1,044 ms
100,740 KB
testcase_19 AC 1,024 ms
99,620 KB
testcase_20 AC 1,088 ms
94,328 KB
testcase_21 AC 1,131 ms
100,244 KB
testcase_22 AC 1,097 ms
99,132 KB
testcase_23 AC 1,463 ms
100,652 KB
testcase_24 AC 1,242 ms
105,892 KB
testcase_25 AC 1,265 ms
100,436 KB
testcase_26 AC 1,080 ms
100,096 KB
testcase_27 AC 1,087 ms
100,456 KB
testcase_28 AC 1,212 ms
98,540 KB
testcase_29 AC 1,139 ms
102,220 KB
testcase_30 AC 1,133 ms
106,728 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.io.PrintWriter;
import java.util.Scanner;

class Main {
	static int L, M, N, Q;
	static int[] A, B;

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		PrintWriter pw=new PrintWriter(System.out);
		L = sc.nextInt();
		M = sc.nextInt();
		N = sc.nextInt();
		int[] A = new int[N + 1];
		int[] B = new int[N + 1];
		for (int i = 0; i < L; ++i) {
			A[sc.nextInt()] = 1;
		}
		for (int i = 0; i < M; ++i) {
			B[N - sc.nextInt()] = 1;
		}
		Q = sc.nextInt();
		Complex[] mul = mul(A, B);
		for (int i = 0; i < Q; ++i) {
			pw.println(Math.round(mul[N+i].re));
		}
		pw.close();
	}

	static Complex[] mul(int[] a, int[] b) {
		int n = 1;
		while (n < a.length + b.length)
			n *= 2;
		Complex[] ac = new Complex[n];
		Complex[] bc = new Complex[n];
		for (int i = 0; i < n; ++i) {
			ac[i] = new Complex(0, 0);
			bc[i] = new Complex(0, 0);
		}
		for (int i = 0; i < a.length; ++i) {
			ac[i].re = a[i];
		}
		for (int i = 0; i < b.length; ++i) {
			bc[i].re = b[i];
		}
		ac = fft(ac, false);
		bc = fft(bc, false);
		for (int i = 0; i < ac.length; ++i) {
			ac[i] = ac[i].mul(bc[i]);
		}
		ac = fft(ac, true);
		for (int i = 0; i < ac.length; ++i) {
			ac[i].re /= n;
			ac[i].co /= n;
		}
		return ac;

	}

	static Complex[] fft(Complex[] a, boolean rev) {
		int n = a.length;
		if (n == 1)
			return a;
		int c = 0;
		for (int i = 1; i < n; ++i) {
			int j;
			for (j = n >> 1; j > (c ^= j); j >>= 1)
				;
			if (c > i) {
				Complex tmp = a[c];
				a[c] = a[i];
				a[i] = tmp;
			}
		}

		for (int d = 1; d < n; d <<= 1) {
			for (int j = 0; j < d; ++j) {
				Complex mul = exp(2 * Math.PI / (2 * d) * (rev ? -1 : 1) * j);
				for (int pos = 0; pos < n; pos += 2 * d) {
					double ure = a[pos + j].re;
					double uco = a[pos + j].co;
					double vre = a[pos + j + d].re * mul.re - a[pos + j + d].co * mul.co;
					double vco = a[pos + j + d].co * mul.re + a[pos + j + d].re * mul.co;
					a[pos + j].re = ure + vre;
					a[pos + j].co = uco + vco;
					a[pos + j + d].re = ure - vre;
					a[pos + j + d].co = uco - vco;
				}
			}
		}
		return a;
	}

	static class Complex {
		double re, co;

		public Complex(double re, double co) {
			this.re = re;
			this.co = co;
		}

		Complex add(Complex o) {
			return new Complex(re + o.re, co + o.co);
		}

		Complex subtract(Complex o) {
			return new Complex(re - o.re, co - o.co);
		}

		Complex mul(Complex o) {
			return new Complex(re * o.re - co * o.co, re * o.co + o.re * co);
		}
	}

	static Complex exp(double theta) {
		return new Complex(Math.cos(theta), Math.sin(theta));
	}
}
0