結果
問題 |
No.407 鴨等素数間隔列の数え上げ
|
ユーザー |
|
提出日時 | 2017-02-23 06:08:02 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 294 ms / 1,000 ms |
コード長 | 1,540 bytes |
コンパイル時間 | 228 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 21,920 KB |
最終ジャッジ日時 | 2024-12-31 10:26:01 |
合計ジャッジ時間 | 3,370 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 31 |
ソースコード
import sys from math import sqrt def solve(): N, L = map(int, input().split()) limit = L // (N - 1) + 1 ans = 0 for p in primes235(limit): if L - (N - 1) * p + 1 <= 0: break ans += L - (N - 1) * p + 1 print(ans) def primes235(limit): # http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Factorization_wheel235_version_of_the_generator_version yield 2; yield 3; yield 5 if limit < 7: return modPrms = [7,11,13,17,19,23,29,31] gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7] lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up lmtsqrt = (int(limit ** 0.5) - 7) lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel buf = [True] * (lmtbf + 1) for i in range(lmtsqrt + 1): if buf[i]: ci = i & 7; p = 30 * (i >> 3) + modPrms[ci] s = p * p - 7; p8 = p << 3 for j in range(8): c = s // 30 * 8 + ndxs[s % 30] buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1) s += p * gaps[ci]; ci += 1 for i in range(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7]) def debug(x, table): for name, val in table.items(): if x is val: print('DEBUG:{} -> {}'.format(name, val), file=sys.stderr) return None if __name__ == '__main__': solve()