結果
問題 | No.470 Inverse S+T Problem |
ユーザー | sekiya9311 |
提出日時 | 2017-03-04 10:48:12 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 13 ms / 2,000 ms |
コード長 | 5,981 bytes |
コンパイル時間 | 1,899 ms |
コンパイル使用メモリ | 127,208 KB |
実行使用メモリ | 6,912 KB |
最終ジャッジ日時 | 2024-06-01 22:49:41 |
合計ジャッジ時間 | 2,972 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,784 KB |
testcase_01 | AC | 5 ms
6,912 KB |
testcase_02 | AC | 4 ms
6,656 KB |
testcase_03 | AC | 4 ms
6,784 KB |
testcase_04 | AC | 5 ms
6,784 KB |
testcase_05 | AC | 5 ms
6,784 KB |
testcase_06 | AC | 13 ms
6,784 KB |
testcase_07 | AC | 13 ms
6,784 KB |
testcase_08 | AC | 13 ms
6,656 KB |
testcase_09 | AC | 4 ms
6,784 KB |
testcase_10 | AC | 4 ms
6,784 KB |
testcase_11 | AC | 5 ms
6,656 KB |
testcase_12 | AC | 5 ms
6,912 KB |
testcase_13 | AC | 4 ms
6,784 KB |
testcase_14 | AC | 5 ms
6,784 KB |
testcase_15 | AC | 5 ms
6,656 KB |
testcase_16 | AC | 3 ms
6,656 KB |
testcase_17 | AC | 3 ms
6,784 KB |
testcase_18 | AC | 5 ms
6,656 KB |
testcase_19 | AC | 4 ms
6,912 KB |
testcase_20 | AC | 3 ms
6,784 KB |
testcase_21 | AC | 4 ms
6,912 KB |
testcase_22 | AC | 4 ms
6,784 KB |
testcase_23 | AC | 4 ms
6,656 KB |
testcase_24 | AC | 4 ms
6,784 KB |
testcase_25 | AC | 3 ms
6,656 KB |
testcase_26 | AC | 4 ms
6,656 KB |
testcase_27 | AC | 4 ms
6,656 KB |
testcase_28 | AC | 6 ms
6,784 KB |
testcase_29 | AC | 4 ms
6,784 KB |
testcase_30 | AC | 5 ms
6,656 KB |
ソースコード
#include <iostream> #include <string> #include <queue> #include <stack> #include <algorithm> #include <list> #include <vector> #include <complex> #include <utility> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <climits> #include <bitset> #include <ctime> #include <map> #include <unordered_map> #include <set> #include <unordered_set> #include <cassert> #include <cstddef> #include <iomanip> #include <numeric> #include <tuple> #include <sstream> #include <fstream> #include <chrono> using namespace std; #define REP(i, n) for (int (i) = 0; (i) < (n); (i)++) #define FOR(i, a, b) for (int (i) = (a); (i) < (b); (i)++) #define RREP(i, a) for(int (i) = (a) - 1; (i) >= 0; (i)--) #define FORR(i, a, b) for(int (i) = (a) - 1; (i) >= (b); (i)--) #define DEBUG(C) cerr << #C << " = " << C << endl; using LL = long long; using VI = vector<int>; using VVI = vector<VI>; using VL = vector<LL>; using VVL = vector<VL>; using VD = vector<double>; using VVD = vector<VD>; using PII = pair<int, int>; using PDD = pair<double, double>; using PLL = pair<LL, LL>; using VPII = vector<PII>; template<typename T> using VT = vector<T>; #define ALL(a) begin((a)), end((a)) #define RALL(a) rbegin((a)), rend((a)) #define SORT(a) sort(ALL((a))) #define RSORT(a) sort(RALL((a))) #define REVERSE(a) reverse(ALL((a))) #define MP make_pair #define FORE(a, b) for (auto &&a : (b)) #define FIND(s, e) ((s).find(e) != (s).end()) #define EB emplace_back template<typename T> inline bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;} template<typename T> inline bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;} const int INF = 1e9; const int MOD = INF + 7; const LL LLINF = 1e18; const long double EPS = 1e-9; class StronglyConnectedComponentDecomposition { private: std::vector<bool> used; std::vector<std::vector<int>> graph, revgraph; std::vector<int> comp; std::vector<int> sortNode; void dfs(int now) { this->used[now] = true; for (const int e : this->graph[now]) { if (!this->used[e]) dfs(e); } this->sortNode.emplace_back(now); return; } void dfs2(int now, int cnt) { this->used[now] = true; for (const int e : this->revgraph[now]) { if (!this->used[e]) dfs2(e, cnt); } this->comp[now] = cnt; return; } public: StronglyConnectedComponentDecomposition() {} StronglyConnectedComponentDecomposition(const int n) : used(n, false), graph(n), revgraph(n), comp(n, 0) {} void resize(const int n) { this->used.resize(n, false); this->graph.resize(n); this->revgraph.resize(n); this->comp.resize(n, 0); } void addEdge(const int from, const int to) { this->graph[from].emplace_back(to); this->revgraph[to].emplace_back(from); return; } int solve() { std::fill(std::begin(this->used), std::end(this->used), false); for (int i = 0; i < (int)this->used.size(); i++) { if (!used[i]) dfs(i); } std::fill(std::begin(this->used), std::end(this->used), false); std::reverse(std::begin(this->sortNode), std::end(this->sortNode)); int res = 0; for (const int n : this->sortNode) { if (!this->used[n]) dfs2(n, res++); } return res; } std::vector<int> getComp() { return this->comp; } bool same(const int a, const int b) { return this->comp[a] == this->comp[b]; } int operator[](const int n) { return comp[n]; } }; // need SCC Library!!!! class Two_Sat { private: StronglyConnectedComponentDecomposition scc; int sz; public: Two_Sat(const int n) : scc(n * 2), sz(n) {} Two_Sat() {} // add (a OR b) void addLogic(const int a, const bool ab, const int b, const bool bb) { this->scc.addEdge(a + (ab ? 0 : this->sz), b + (bb ? this->sz : 0)); this->scc.addEdge(b + (bb ? 0 : this->sz), a + (ab ? this->sz : 0)); } // (logic 1) AND (logic 2) AND ... (logic N) <- satisfy bool calcSatisfy() { this->scc.solve(); for (int i = 0; i < this->sz; i++) { if (this->scc.same(i, i + this->sz)) return false; } return true; } bool operator[](const int n) { return this->scc[n] > this->scc[n + sz]; } }; const int MAX = 1e5 + 10; char strbuf[MAX]; string next() { scanf("%s", strbuf); return strbuf; } int N; string S[MAX]; int main(void) { int cnt = 0; scanf("%d", &N); for (int i = 0; i < N; ++i) { S[i] = next(); } if (N > 1000) { puts("Impossible"); return 0; } Two_Sat ts(N); for (int i = 0; i < N; ++i) { for (int j = i + 1; j < N; ++j) { if (S[i].substr(0, 1) == S[j].substr(0, 1) || S[i].substr(1, 2) == S[j].substr(1, 2)) { ts.addLogic(i, true, j, true); } if (S[i].substr(0, 1) == S[j].substr(2, 1) || S[i].substr(1, 2) == S[j].substr(0, 2)) { ts.addLogic(i, true, j, false); } if (S[i].substr(2, 1) == S[j].substr(0, 1) || S[i].substr(0, 2) == S[j].substr(1, 2)) { ts.addLogic(i, false, j, true); } if (S[i].substr(2, 1) == S[j].substr(2, 1) || S[i].substr(0, 2) == S[j].substr(0, 2)) { ts.addLogic(i, false, j, false); } } } if (!ts.calcSatisfy()) { puts("Impossible"); return 0; } for (int i = 0; i < N; ++i) { if (ts[i]) { for (int j = 0; j < 3; ++j) { putchar(S[i][j]); if (j == 0) putchar(' '); } putchar('\n'); } else { for (int j = 0; j < 3; ++j) { putchar(S[i][j]); if (j == 1) putchar(' '); } putchar('\n'); } } }