結果
| 問題 |
No.404 部分門松列
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-03-04 15:45:36 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 585 ms / 2,000 ms |
| コード長 | 5,581 bytes |
| コンパイル時間 | 14,350 ms |
| コンパイル使用メモリ | 378,428 KB |
| 実行使用メモリ | 17,544 KB |
| 最終ジャッジ日時 | 2024-06-28 17:21:43 |
| 合計ジャッジ時間 | 26,043 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 31 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
/// Binary Indexed Tree (Fenwick Tree). Holds an array of type T.
/// T is a commutative monoid. Indices are 1 .. n.
/// Verified by yukicoder No.404 (http://yukicoder.me/submissions/155373)
struct BIT<T> {
n: usize,
ary: Vec<T>,
e: T,
}
impl<T: Clone + std::ops::AddAssign<T>> BIT<T> {
fn new(n: usize, e: T) -> Self {
let n = n.next_power_of_two();
BIT { n: n, ary: vec![e.clone(); n + 1], e: e }
}
/**
* gets the sum in [1 .. idx]
* @param idx
* @return sum
*/
fn accum(&self, mut idx: usize) -> T {
let mut sum = self.e.clone();
while idx > 0 {
sum += self.ary[idx].clone();
idx &= idx - 1;
}
sum
}
/**
* performs data[idx] += val;
*/
fn add<U: Clone>(&mut self, mut idx: usize, val: U)
where T: std::ops::AddAssign<U> {
assert!(idx > 0);
let n = self.n;
while idx <= n {
self.ary[idx] += val.clone();
idx += (idx as i64 & (-(idx as i64))) as usize;
}
}
/// Make sure that 1 <= idx <= n.
#[allow(unused)]
fn single(&self, idx: usize) -> T
where T: std::ops::Sub<Output = T> {
self.accum(idx) - self.accum(idx - 1)
}
}
/// This implementation of AddAssign is useful when you want to make a 2D BIT.
impl<T: Clone, U: Clone> std::ops::AddAssign<(usize, U)> for BIT<T>
where T: std::ops::AddAssign<U>,
T: std::ops::AddAssign<T> {
fn add_assign(&mut self, (idx, val): (usize, U)) {
self.add(idx, val);
}
}
/// Coordinate compression
/// Returns a vector of usize, with i-th element the "rank" of a[i] in a.
/// The property forall i. inv_map[ret[i]] == a[i] holds.
fn coord_compress<T: Ord>(a: &[T])
-> (Vec<usize>, Vec<&T>) {
let n = a.len();
let mut cp: Vec<(&T, usize)> = (0 .. n).map(|i| (&a[i], i)).collect();
cp.sort();
let mut inv_map = Vec::with_capacity(n);
let mut prev: Option<&T> = None;
let mut ret = vec![0; n];
let mut cnt = 0;
for (v, i) in cp {
if prev == Some(v) {
ret[i] = cnt - 1;
continue;
}
ret[i] = cnt;
inv_map.push(v);
prev = Some(v);
cnt += 1;
}
(ret, inv_map)
}
fn calc_three_steps(a: &[usize]) -> Vec<i64> {
let n = a.len();
// Shifted by 1 (right) to avoid subtraction underflow
let mut st = BIT::new(n, 0);
let mut st_sq = BIT::new(n, 0);
let mut ret = vec![0; n];
for i in 0 .. n {
let tmp = st.single(a[i] + 1);
let stsum = st.accum(a[i]);
ret[i] = (stsum * stsum - st_sq.accum(a[i])) / 2;
st += (a[i] + 1, 1);
// (x + 1)^2 - x^2 = 2 * x + 1
st_sq += (a[i] + 1, 2 * tmp + 1);
}
ret
}
fn calc_three_any(a: &[usize]) -> Vec<i64> {
let n = a.len();
// Shifted by 1 (right) to avoid subtraction underflow
let mut st = vec![0; n + 1];
let mut st_sq = vec![0; n + 1];
let mut ret = vec![0; n];
for i in 0 .. n {
let tmp = st[a[i] + 1] + 1;
st[a[i] + 1] = tmp;
st_sq[a[i] + 1] = tmp * tmp;
}
// acc
for i in 0 .. n {
st[i + 1] += st[i];
st_sq[i + 1] += st_sq[i];
}
for i in 0 .. n {
let stsum = st[a[i]];
ret[i] = (stsum * stsum - st_sq[a[i]]) / 2;
}
ret
}
// Finds #{(j, k) | j < i < k, a[j] < a[i] > a[k], a[j] != a[k]} for every i.
fn calc_max_aux(a: &[i32], ret: &mut [i64]) {
let n = a.len();
let (mut a, _) = coord_compress(a);
let three = calc_three_steps(&a);
let any = calc_three_any(&a);
a.reverse();
let three_rev = calc_three_steps(&a);
for i in 0 .. n {
ret[i] += any[i] -three[i] - three_rev[n - 1 - i];
}
}
// Precomputation
// Counts how many kadomatsu seqs. with the center a[i] can be made.
// O(n * log(n))
fn calc_aux(a: &[i32]) -> Vec<i64> {
let n = a.len();
let mut aux: Vec<i64> = vec![0; n];
calc_max_aux(a, &mut aux);
let mut a = a.to_vec();
for v in a.iter_mut() {
*v *= -1;
}
calc_max_aux(&a, &mut aux);
aux
}
fn main() {
let line = getline();
let n = line.trim().parse().ok().unwrap();
let line = getline();
let a: Vec<i32> = line.trim().split(" ").map(|s| s.parse().ok().unwrap())
.collect();
let aux = calc_aux(&a);
let mut acc = vec![(0, 0); n + 1];
for i in 0 .. n {
acc[i] = (a[i], aux[i]);
}
acc[n] = (-1 << 30, 0);
acc.sort();
let acc0: Vec<i64> = acc.iter().map(|&v| 2 * v.0 as i64).collect();
let mut acc1: Vec<i64> = acc.iter().map(|&v| v.1).collect();
for i in 0 .. n + 1 {
acc1[i] += if i == 0 { 0 } else { acc1[i - 1] };
}
let line = getline();
let q = line.trim().parse().ok().unwrap();
for _ in 0 .. q {
let line = getline();
let readvec: Vec<i64> = line.trim().split(" ").map(|s| s.parse().ok().unwrap())
.collect();
let l: i64 = readvec[0];
let h: i64 = readvec[1];
let upper = match acc0.binary_search(&(2 * h + 1)) {
Ok(v) => v,
Err(v) => v,
};
let lower = match acc0.binary_search(&(2 * l - 1)) {
Ok(v) => v,
Err(v) => v,
};
println!("{}", acc1[upper - 1] - acc1[lower - 1]);
}
}