結果
| 問題 |
No.492 IOI数列
|
| コンテスト | |
| ユーザー |
koyumeishi
|
| 提出日時 | 2017-03-11 01:13:49 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 1,000 ms |
| コード長 | 7,206 bytes |
| コンパイル時間 | 1,422 ms |
| コンパイル使用メモリ | 124,256 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-24 09:26:48 |
| 合計ジャッジ時間 | 2,220 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 |
ソースコード
#include <iostream>
#include <vector>
#include <cstdio>
#include <sstream>
#include <map>
#include <string>
#include <algorithm>
#include <queue>
#include <cmath>
#include <functional>
#include <set>
#include <ctime>
#include <random>
#include <chrono>
#include <cassert>
#include <tuple>
#include <utility>
using namespace std;
namespace {
using Integer = long long; //__int128;
template<class T, class S> istream& operator >> (istream& is, pair<T,S>& p){return is >> p.first >> p.second;}
template<class T> istream& operator >> (istream& is, vector<T>& vec){for(T& val: vec) is >> val; return is;}
template<class T> istream& operator , (istream& is, T& val){ return is >> val;}
template<class T, class S> ostream& operator << (ostream& os, const pair<T,S>& p){return os << p.first << " " << p.second;}
template<class T> ostream& operator << (ostream& os, const vector<T>& vec){for(size_t i=0; i<vec.size(); i++) os << vec[i] << (i==vec.size()-1?"":" "); return os;}
template<class T> ostream& operator , (ostream& os, const T& val){ return os << " " << val;}
istream& operator >> (istream& is, __int128& x){
static char buff[100];
is >> buff;
x = 0;
size_t i = 0;
if(buff[0] == '-') i++;
for(; buff[i]; i++){
x *= 10;
x += buff[i]-'0';
}
if(buff[0] == '-') x *= -1;
return is;
}
ostream& operator << (ostream& os, __int128 x){
if(x==0) return os << 0;
string s;
if(x<0){
os << "-";
x *= -1;
}
while(x!=0){
s += (x%10) + '0';
x /= 10;
}
reverse(s.begin(), s.end());
return os << s;
}
template<class H> void print(const H& head){ cout << head; }
template<class H, class ... T> void print(const H& head, const T& ... tail){ cout << head << " "; print(tail...); }
template<class ... T> void println(const T& ... values){ print(values...); cout << endl; }
template<class H> void eprint(const H& head){ cerr << head; }
template<class H, class ... T> void eprint(const H& head, const T& ... tail){ cerr << head << " "; eprint(tail...); }
template<class ... T> void eprintln(const T& ... values){ eprint(values...); cerr << endl; }
class range{ Integer start_, end_, step_; public: struct range_iterator{ Integer val, step_; range_iterator(Integer v, Integer step) : val(v), step_(step) {} Integer operator * (){return val;} void operator ++ (){val += step_;} bool operator != (range_iterator& x){return step_ > 0 ? val < x.val : val > x.val;} }; range(Integer len) : start_(0), end_(len), step_(1) {} range(Integer start, Integer end) : start_(start), end_(end), step_(1) {} range(Integer start, Integer end, Integer step) : start_(start), end_(end), step_(step) {} range_iterator begin(){ return range_iterator(start_, step_); } range_iterator end(){ return range_iterator( end_, step_); } };
inline string operator "" _s (const char* str, size_t size){ return move(string(str)); }
constexpr Integer my_pow(Integer x, Integer k, Integer z=1){return k==0 ? z : k==1 ? z*x : (k&1) ? my_pow(x*x,k>>1,z*x) : my_pow(x*x,k>>1,z);}
constexpr Integer my_pow_mod(Integer x, Integer k, Integer M, Integer z=1){return k==0 ? z%M : k==1 ? z*x%M : (k&1) ? my_pow_mod(x*x%M,k>>1,M,z*x%M) : my_pow_mod(x*x%M,k>>1,M,z);}
constexpr unsigned long long operator "" _ten (unsigned long long value){ return my_pow(10,value); }
inline int k_bit(Integer x, int k){return (x>>k)&1;} //0-indexed
mt19937 mt(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count());
template<class T> string join(const vector<T>& v, const string& sep){ stringstream ss; for(size_t i=0; i<v.size(); i++){ if(i>0) ss << sep; ss << v[i]; } return ss.str(); }
inline string operator * (string s, int k){ string ret; while(k){ if(k&1) ret += s; s += s; k >>= 1; } return ret; }
}
constexpr long long mod = 9_ten + 7;
long long gcd(long long a, long long b){ return (b==0)?a:gcd(b,a%b); }
template<class ... T> long long gcd(long long a, long long b, T ... c){ return gcd(gcd(a,b), c...);}
long long lcm(long long a, long long b){ if(a<b) swap(a,b); return (b==1)?a:a*(b/gcd(a,b)); }
template<class ... T> long long lcm(long long a, long long b, T ... c){ return lcm(lcm(a,b), c...);}
long long extgcd(long long a, long long b, long long &x, long long &y){
long long d=a;
if(b!=0){
d = extgcd(b, a%b, y, x);
y -= (a/b) * x;
}else{
x = 1;
y = 0;
}
return d;
}
long long mod_inverse(long long a, long long m){
long long x,y;
extgcd(a,m,x,y);
return (m+x%m)%m;
}
template<class T>
vector< vector<T> > multmat(const vector<vector<T> > &A, const vector<vector<T>> &B, int n, int p, int m, T mod){
vector<vector<T> > C(n, vector<T>(m,0));
for(int i=0; i<n; i++){
for(int k=0; k<p; k++){
for(int j=0; j<m; j++){
C[i][j] += A[i][k] * B[k][j];
C[i][j] %= mod;
}
}
}
return C;
}
//A[n*n]^k
template<class T>
vector< vector<T> > mat_pow(vector<vector<T> > A, long long k, T mod){
int n = A.size();
vector<vector<T> > ret(n, vector<T>(n, 0) );
for(int i=0; i<n; i++){
ret[i][i] = 1;
}
while(k>0){
if(k&1) ret = multmat(A,ret, n,n,n, mod);
A = multmat(A,A, n,n,n, mod);
k>>=1;
}
return ret;
}
template<class T>
T Chinese_Remainder_Theorem_Garner(vector<long long> x, vector<long long> y, T MOD){
int N = x.size();
bool valid = true;
//前処理
//gcd(Yi,Yj) == 1 (i!=j) でなくてはならないので、
//共通の因数 g = gcd(Yi,Yj) を見つけたら片側に寄せてしまう
for(int i=0; i<N; i++){
for(int j=i+1; j<N; j++){
if(i == j) continue;
long long g = gcd(y[i], y[j]);
if( x[i]%g != x[j]%g ) valid = false; //解が存在しない
if(g != 1){
y[i] /= g; y[j] /= g;
long long g_ = gcd(y[i], g);
while(g_ != 1){
y[i] *= g_;
g /= g_;
g_ = gcd(y[i], g);
}
y[j] *= g;
x[i] %= y[i];
x[j] %= y[j];
}
}
}
if(!valid){
cerr << -1 << endl;
return 0;
}
//Garner's algorithm
vector<T> z(N);
for(int i=0; i<N; i++){
z[i] = x[i];
for(int j=0; j<i; j++){
z[i] = mod_inverse(y[j], y[i]) % y[i] * (z[i] - z[j]) % y[i];
z[i] = (z[i]+y[i])%y[i];
}
}
__int128 ans = 0;
__int128 tmp = 1;
for(int i=0; i<N; i++){
ans = (ans + z[i] * tmp)%MOD;
tmp = (tmp * y[i])%MOD;
}
return ans;
}
int main(){
long long n;
cin >> n;
if(n==1){
println(1);
println(1);
return 0;
}
vector<vector<long long>> A = {
{100, 1},
{ 0, 1}
};
auto AA = A;
vector<long long> M = {
11,
23,
4093,
8779,
21649,
513239,
mod
};
vector<vector<vector<long long>>> B(M.size());
for(int i=0; i<M.size(); i++){
A = AA;
for(auto& v : A) for(auto& x : v) x %= M[i];
B[i] = mat_pow(A, n-1, M[i]);
}
vector<long long> C(M.size());
for(int i=0; i<M.size(); i++){
C[i] = (B[i][0][0] + B[i][0][1]) % M[i];
}
println( C.back() );
C.pop_back();
M.pop_back();
stringstream ss;
ss << "101010101010101010101";
__int128 MOOOD;
ss >> MOOOD;
__int128 c = Chinese_Remainder_Theorem_Garner<__int128>(C, M, MOOOD);
println( c );
return 0;
}
koyumeishi