結果
| 問題 |
No.459 C-VS for yukicoder
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-03-15 21:45:45 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 13,850 bytes |
| コンパイル時間 | 2,114 ms |
| コンパイル使用メモリ | 194,416 KB |
| 実行使用メモリ | 23,296 KB |
| 最終ジャッジ日時 | 2024-07-04 01:24:25 |
| 合計ジャッジ時間 | 14,077 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 RE * 30 |
ソースコード
#include"bits/stdc++.h"
using namespace std;
typedef unsigned int uint;
typedef long long int ll;
typedef unsigned long long int ull;
#define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;
#define debugm(m) printf("L%d %s is..\n",__LINE__,#m);for(auto v:m){for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) printf("L%d %s is => ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;
#define debugaa(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[x][y]<<" ";}cout<<endl;}
#define debugaar(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}
#define ALL(v) (v).begin(),(v).end()
#define BIGINT 0x7FFFFFFF
#define E107 1000000007ll
void printbit(int u) { if (u == 0)cout << 0; else { int s = 0, k = 0; for (; 0<u; u >>= 1, k++)s = (s << 1) | (u & 1); for (; 0<k--; s >>= 1)cout << (s & 1); } }
#define TIME chrono::system_clock::now()
#define MILLISEC(t) (chrono::duration_cast<chrono::milliseconds>(t).count())
namespace {
std::chrono::system_clock::time_point t;
void tic() { t = TIME; }
void toc() { fprintf(stderr, "TIME : %lldms\n", MILLISEC(TIME - t)); }
std::chrono::system_clock::time_point tle = TIME;
void safe_tle(int msec) { assert(MILLISEC(TIME - tle) < msec); }
}
template<typename T1, typename T2>
ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }
void safebreak() { static auto t = TIME; assert(MILLISEC(TIME - t) < 5000); }
namespace std {
template<typename T1, typename T2>
class hash<pair<T1, T2>> {
public:
size_t operator()(const pair<T1, T2>& x) const {
return hash<T1>()(x.first) ^ hash<T2>()(x.second);
}
};
}
// todo : typedef int_c int // capacity
// TODO:マーカーの実装?
class Flow {
public:
size_t n;
struct Arrow {
int from, to;
int dual; // 相手(逆方向)のArrowID
int capleft;
int cap;
Arrow(int from = 0, int to = 0, int dual = 0, int left = 1, int cap = 1) :from(from), to(to), dual(dual), capleft(left), cap(cap) {}
};
vector<vector<int>> vertex_to;
vector<vector<int>> vertex_from; // TODO: いらない
vector<Arrow> arrow;
Flow(int n, int m = 5010) :n(n), vertex_to(n), vertex_from(n) { arrow.reserve(m); }
void connect(int from, int to, int w_max) {
int id = arrow.size();
vertex_to[from].push_back(id);
vertex_from[to].push_back(id);
arrow.emplace_back(from, to, id + 1, w_max, w_max);
vertex_to[to].push_back(id + 1); // 逆方向のArrowも追加する
vertex_from[from].push_back(id + 1); // この辺のidは必ず奇数
arrow.emplace_back(to, from, id, 0, w_max);
}
size_t degree(int v) {
return vertex_to[v].size() + vertex_from[v].size();
}
size_t degree_in(int v) {
return vertex_from[v].size();
}
size_t degree_out(int v) {
return vertex_to[v].size();
}
};
// DAG
int _dinic_tree_dfs(Flow& flow, vector<bool>& flag, const vector<int>& dist, int u, int i_sink, int mini) {
safe_tle(50);
if (i_sink == u) return mini;
int sumw = 0;
bool term = true;
for (int e : flow.vertex_to[u]) {
Flow::Arrow& a = flow.arrow[e];
if (a.capleft > 0 && dist[u]>dist[a.to]) {
int w;
if (mini < 0)
w = a.capleft;
else
w = min(a.capleft, mini);
w = _dinic_tree_dfs(flow, flag, dist, a.to, i_sink, w);
if (w == -1) continue;
a.capleft -= w;
flow.arrow[a.dual].capleft += w;
//printf("%d->%d (%d) : w=%d mini=%d \n",a.from,a.to,a.left+w,w,mini);
sumw += w;
mini -= w;
term = false;
}
}
return term ? -1 : sumw;
}
int _dinic_path_dfs(Flow& flow, vector<bool>& flag, const vector<int>& dist, int u, int i_sink, int mini) {
safe_tle(50);
if (mini == 0) return 0;
if (i_sink == u) return mini;
for (int e : flow.vertex_to[u]) {
Flow::Arrow& a = flow.arrow[e];
if (a.capleft > 0 && dist[u]>dist[a.to]) {
int w;
if (mini < 0)
w = a.capleft;
else
w = min(a.capleft, mini);
w = _dinic_path_dfs(flow, flag, dist, a.to, i_sink, w);
if (w <= 0) continue;
a.capleft -= w;
flow.arrow[a.dual].capleft += w;
return w;
}
}
return 0;
}
// 各頂点に流れる流量の演算を消去
// flowは書き換えられる.
void dinic(Flow &flow, int i_source, int i_sink) {
assert(i_source != i_sink);
int distbegin = 0;
vector<int> dist(flow.n);
queue<int> q;
vector<bool> flag(flow.n);
for (int distbegin = 0; ; distbegin += flow.n) {
// for (int i = 0; i < flow.arrow.size(); ++i) {
// if (i % 2 == 0) {
// Flow::Arrow a = flow.arrow[i];
// printf("%d->%d : %d\n", a.from, a.to, a.capleft);
// }
// }
// for (int i = 0; i < flow.arrow.size(); ++i) {
// if (i % 2 == 1) {
// Flow::Arrow a = flow.arrow[i];
// printf("%d->%d :R%d\n", a.from, a.to, a.capleft);
// }
// }
q.emplace(i_sink); // bfsはsinkからsourceへの距離を計算.
dist[i_sink] = distbegin + 1;
while (!q.empty()) {
int v = q.front();
q.pop();
for (int ie : flow.vertex_from[v]) {
const Flow::Arrow& e = flow.arrow[ie];
if (0<e.capleft && dist[e.from] <= distbegin) {
dist[e.from] = dist[v] + 1;
q.emplace(e.from);
}
}
}
//debugv(dist);
fill(ALL(flag), false);
if (dist[i_source] <= distbegin) {
break;
}
else {
while (_dinic_path_dfs(flow, flag, dist, i_source, i_sink, -1) > 0) ;
// if (_dinic_tree_dfs(flow, flag, dist, i_source, i_sink, -1) <= 0) break;
}
}
}
// 最大最小流量制限付き
class FlowMinMax {
public:
Flow flow;
int ss; // vertex of new source
FlowMinMax(int n, int m) :flow(n + 2, m), ss(n) {}
FlowMinMax(int n) :flow(n + 2), ss(n) {}
void connect(int from, int to, int w_min, int w_max) {
// assert(w_min < w_max);
/*
flow.connect(from, ss+1, w_min);
flow.connect(from, to , w_max-w_min);
flow.connect(ss , to , w_min);
return;
*/
if (w_max == w_min) {
flow.connect(ss, to, w_min);
flow.connect(from, ss + 1, w_min);
}
else if (w_min == 0) {
flow.connect(from, to, w_max - w_min);
}
else {
flow.connect(from, ss + 1, w_min);
flow.connect(from, to, w_max - w_min);
flow.connect(ss, to, w_min);
}
}
private:
template<typename MAP_PI> // map<pair<int,int>,int> or unordered_map
bool _solve_dinic_edge(MAP_PI& result_edge, int i_source, int i_sink) {
dinic(flow, ss, ss + 1);
dinic(flow, ss, i_sink);
dinic(flow, i_source, ss + 1);
dinic(flow, i_source, i_sink);
for (int e : flow.vertex_from[ss + 1]) {
const Flow::Arrow& a = flow.arrow[e];
//printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush();
if (0 < a.capleft) return false;
}
int floow;
for (int u = 0; u<flow.n - 2; u++) {
for (int ea : flow.vertex_to[u]) { // TODO:無駄っぽい(2回参照)
const Flow::Arrow& a = flow.arrow[ea]; // u -> v
if (a.to >= flow.n - 2) {
if (0 < a.capleft) return false;
continue;
}
const Flow::Arrow& c = flow.arrow[ea + 2]; // S -> v
if (a.to != c.to) {
floow = a.cap - a.capleft;
}
else {
if (0 < c.capleft) return false;
floow = c.cap + a.cap - c.capleft - a.capleft;
}
if (0 < floow)
result_edge[make_pair(u, a.to)] += floow;
}
}
return true;
}
// connect操作を行うので,2回以上呼び出すのは禁止
// sumflow = sink,flowの流量が既知
template<typename MAP_PI>
bool _solve_dinic_edge_known(MAP_PI& result_edge, int i_source, int i_sink, int sumflow) {
flow.connect(ss, i_source, sumflow);
flow.connect(i_sink, ss + 1, sumflow);
dinic(flow, ss, ss + 1);
for (int e : flow.vertex_from[ss + 1]) {
if (e % 2 == 1) continue; // is dual edge?
const Flow::Arrow& a = flow.arrow[e];
//printf("%d: %d->%d (%d)\n",e,a.from,a.to,a.capleft);cout.flush();
if (0 < a.capleft) return false;
}
int floow;
for (int u = 0; u<flow.n - 2; u++) {
for (int ea : flow.vertex_to[u]) { // TODO:無駄っぽい(2回参照)
if (ea % 2 == 1) continue; // is dual edge?
const Flow::Arrow& a = flow.arrow[ea]; // u -> v
if (a.to >= flow.n - 2) {
if (0 < a.capleft) return false;
continue;
}
const Flow::Arrow& c = flow.arrow[ea + 2]; // S -> v
if (a.to != c.to) {
floow = a.cap - a.capleft;
}
else {
if (0 < c.capleft) return false;
floow = c.cap + a.cap - c.capleft - a.capleft;
}
if (0 < floow)
result_edge[make_pair(u, a.to)] += floow;
}
}
return true;
}
public:
bool solve_dinic_edge(map<pair<int, int>, int>& result_edge, int i_source, int i_sink, int sumflow = -1) {
return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink)
: _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow);
}
bool solve_dinic_edge(unordered_map<pair<int, int>, int>& result_edge, int i_source, int i_sink, int sumflow = -1) {
return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink)
: _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow);
}
};
/**
// dinic sample
int main(){
int i,j,k;
int x,y,a,b;
Flow graph(6);
graph.connect(0,1,1);
graph.connect(1,4,1);
graph.connect(4,5,1);
graph.connect(0,3,1);
graph.connect(3,4,1);
graph.connect(1,2,1);
graph.connect(2,5,1);
//vector<int> result(6,0);
dinic(graph,0,5);
//debugv(result);
for (int i = 0; i < graph.arrow.size(); ++i) {
if (i % 2 == 0) {
Flow::Arrow a = graph.arrow[i];
printf("%d->%d : %d\n", a.from, a.to, a.capleft);
}
}
// FlowMinMax graph2(3);
//
// graph2.connect(0,1,1,2);
// graph2.connect(1,2,3,4);
//
// vector<int> result2(3,0);
// cout << (graph2.solve_dinic(result2,0,2) ? "true" : "false") << endl;
//
// debugv(result2);
return 0;
}
/**/
/**/
int width, height;
int m, n;
int field[10010];
int commands[30010];
int main() {
int i, j, k;
int x, y, a, b;
tic();
cin >> height >> width >> n;
cin.ignore();
int nblocks = 0;
// X座標にブロックがいくつ積まれているか、を記録する。
// stringを保持する必要はない。
for (y = 0; y < height; y++) {
string s;
cin >> s;
for (x = 0; x < width; x++) {
field[x] += s[x] == '#';
}
}
for (x = 0; x < width; x++) { nblocks += field[x]; }
for (i = 0; i < n; i++) {
scanf("%d", commands + i);
}
// A _ B _ C
// | | ----> | | ----> [sink]
// [source] -> | | | |
// | | | |
// |_pack |_field
//
// A : [1,9] (packは[1,9]個のブロックを持つ)
// B : [0,3] (packは3x3の容量を持つ)
// C : [#,#] (x列には#個のブロックが積み上がっている)
FlowMinMax flow(1 + n + width + 1);
const int i_source = 0;
const int i_sink = 1;
for (i = 0; i < n; i++) {
// A edge
flow.connect(i_source, 2 + i, 1, 9);
int left = commands[i];
for (j = 0; j < 3; j++) {
// B edge
flow.connect(2 + i, 2 + n + left + j, 0, 3);
}
}
for (x = 0; x < width; x++) {
// C edge
flow.connect(2 + n + x, i_sink, field[x], field[x]);
}
//for (Flow::Arrow& ar : flow.flow.arrow){
// if (ar.w_max == 0) continue;
// printf("%d -> %d\n",ar.from,ar.to);
//}
unordered_map<pair<int, int>, int> nagare;
if (!flow.solve_dinic_edge(nagare, i_source, i_sink, nblocks)) {
cout << "hage" << endl;exit(0);
cerr << "ABORT" << endl;
abort();
cout << "warn" << endl;
}
//debugv(nagare);
int hako[3];
for (i = 0; i < n; i++) {
for (j = 0; j < 3; j++) {
hako[j] = nagare[make_pair(2 + i, 2 + n + commands[i] + j)];
}
for (y = 3; 0 < y; y--) {
for (x = 0; x < 3; x++) {
if (y <= hako[x]) {
putchar('#');
}
else {
putchar('.');
}
}
putchar('\n');
}
}
toc();
return 0;
}
/*
2 4 3
..#.
..##
0
1
0
*/