結果
問題 | No.494 yukicoder |
ユーザー | jousen |
提出日時 | 2017-03-24 22:23:26 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 105 ms / 2,000 ms |
コード長 | 7,251 bytes |
コンパイル時間 | 2,767 ms |
コンパイル使用メモリ | 89,892 KB |
実行使用メモリ | 41,248 KB |
最終ジャッジ日時 | 2024-07-06 02:31:49 |
合計ジャッジ時間 | 4,028 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 96 ms
40,068 KB |
testcase_01 | AC | 103 ms
41,004 KB |
testcase_02 | AC | 90 ms
39,764 KB |
testcase_03 | AC | 86 ms
39,348 KB |
testcase_04 | AC | 100 ms
41,072 KB |
testcase_05 | AC | 97 ms
41,248 KB |
testcase_06 | AC | 105 ms
41,104 KB |
testcase_07 | AC | 92 ms
40,036 KB |
testcase_08 | AC | 92 ms
40,212 KB |
ソースコード
package main; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Scanner; public class Main { private static int[] arr; private int[][] ar2; private List<Integer> list; public static int n,m,k; private static HashSet<Integer> set; private static HashMap<Integer, Integer> map; private static Scanner sc = new Scanner(System.in); private static List<List<Integer>> ll; private static List<HashSet<Integer>> hList; public static void main(String[] args){ //n = sc.nextInt(); //arr = new int[n]; String string = sc.nextLine(); String yuki = "yukicoder"; int id = string.indexOf('?'); System.out.println(yuki.charAt(id)); } } class array2D{ public int[][] arr; public array2D(int row, int col) { arr = new int[row][col]; for(int i=0; i<row; i++){ arr[i] = new int[col]; for(int j=0; j<col; j++){ arr[i][j ]=0; } } } } class Tupple{ int a=0, b=0; public Tupple(int x, int y) { // TODO 自動生成されたコンストラクター・スタブ this.a = x; this.b = y; } public int first() { return this.a; } public int second() { return this.b; } } class sqrtArr{ public int[] arr; public int n; public sqrtArr(int x , int[] original) { this.n = (int)Math.sqrt(x)+1; arr = new int[n]; for(int i=0; i<x; i++){ arr[i/n] += original[i]; } } public int get(int l , int r) { int sum =0; for(int i=l; i<=r;){ if(i% n==0 && i+n-1 <=r){ sum += arr[i/n]; i += n; } else { sum +=arr[i]; i++; } } return sum; } } class UnionFind{ public int[] path; public int[] size; public List<HashSet<Integer>> list; public UnionFind (int n, int[] original) { path = new int[n+1]; size = new int[n+1]; list = new ArrayList<HashSet<Integer>>(); for(int i=0; i<n; i++){ path[i] = i; size[i] =1; list.add(new HashSet<Integer>()); list.get(i).add(original[i]); } } public int root(int i){ while (path[i] != i) { path[i] = path[path[path[i]]]; i = path[i]; } return i; } public boolean find(int p, int q) { if(p<0 || q<0)return false; return root(p) == root(q); } public void uniite(int p, int q) { if(p<0 || q<0)return; int i = root(p); int j = root(q); if(i==j)return; if(size[i]>size[j]){ // int tmp = i;l // i=j; // j = tmp; i^=j^=i^=j; } size[j ] += size[i]; path[i] = j; } } class BIT{ int n; private int[] bit = new int[100010]; public BIT(int x , int[] original){ this.n = x; for(int i=1; i<=n; i++){ //bit[i] = original[i]; add(i, original[i]); } } public void add(int a, int w) { for(int i = a; i<=n; i+= i&(-i))bit[i] +=w; } public int sum(int a) { int sum = 0; for(int i=a;i>0; i-=i&(-i)) sum+=bit[i]; return sum; } public int binary(int w){ if(w<=0)return 0; int x =0; for(int k = n%2==0? n:n-1; k>0; k/=2){ if(x+k<=n && bit[x+k]<w){ w -=bit[x+k]; x += k; } } return x+1; } } class Segment{ int n; int size ; private int[] dat; //private HashSet<Integer>[] dat; public Segment(int x) { this.n = x; this.size = x*2; dat = new int[size]; //dat = new HashSet<Integer>[size]; for(int i=0; i<size;i++){ dat[i] = Integer.MAX_VALUE; //dat[i ] = new HashSet<>(); } } public void update(int i, int x) { i = n+i-1; dat[i ] = x; while (i>0) { i =(i-1)/2; dat[i] = Math.min(dat[i*2+1], dat[i*2+2]); } } int query(int a, int b, int k, int l, int r){ if(r<=a || b<=l)return Integer.MAX_VALUE; if(a<=l && r<=b)return dat[k]; else { int vl = query(a, b, k*2+1, l, (l+r)/2); int vr = query(a, b, k*2+2, (l+r)/2, r); return Math.min(vl, vr); } } } class Tree{ int n,l ; private int[][] g; private int[] tin,tout; int timer; private int[][] up; public Tree(int n){ this.n = n; tin = new int[n+1]; tout = new int[n+1]; timer = 0; g= new int[n+1][l]; up = new int[n+1][l]; l = 1; while ((1 << l) <= n) ++ l; //for (int i = 0; i <n; ++ i) up [i] = new int[l+1]; for(int i=0; i<=n; i++){ g[i] = new int[l+1]; up[i]= new int[l+1]; } } void dfs (int v, int p) { tin [v] = ++ timer; up [v] [0] = p; for (int i = 1; i <= l; ++ i) up [v] [i] = up [up [v] [i-1]] [i-1]; for (int i = 0; i <g [v].length; ++ i) { int to = g [v] [i]; if (to!= p) dfs (to, v); } tout [v] = ++ timer; } boolean upper (int a, int b) { return tin [a] <= tin [b] && tout [a]>= tout [b]; } int lca (int a, int b) { if (upper (a, b)) return a; if (upper (b, a)) return b; for (int i = l; i>= 0; --i) if (! upper (up [a] [i], b)) a = up [a] [i]; return up [a] [0]; } } //class Tree{ // int n,l ; // private int[][] g; // private int[] tin,tout; // int timer; // private int[][] up; // private int[] parent ; // // public Tree(int n){ // this.n = n; // this.l = (int)Math.pow(2,n); // tin = new int[n+1]; // tout = new int[n+1]; // timer = 0; // parent = new int[n+1]; // g= new int[n+1][n+1]; // up = new int[n+1][n+1]; // for(int i=0; i<=n; i++){ // g[i] = new int[n+1]; // up[i]= new int[n+1]; // } // } // // void preprocess(){ // //Every element in P[][] is -1 initially; // for(int i = 1 ; i <= n ; ++i){ // for(int j = 0 ; (1<<j) < n ; ++i){ // g[i][j] = -1; // } // } // // //The first ancestor(2^0 th ancestor) // //for every node is parent[node] // for(int i = 1 ; i <= n ; ++i){ // g[i][0] = parent[i] ; // } // // for(int j = 1; (1<<j) < n ; ++j){ // for(int i = 1 ; i <= n ; ++i){ // //If a node does not have a (2^(j-1))th ancestor // //Then it does not have a (2^j)th ancestor // //and hence P[i][j] should remain -1 // //Else the (2^j)th ancestor of node i // //is the (2^(j-1))th ancestor of ((2^(j-1))th ancestor of node i) // if(g[i][j-1] != -1){ // g[i][j] = g[g[i][j-1]][j-1] ; // } // } // } // } // int LCA(int u , int v){ // if(level[u] < level[v]){ // swap(u,v) ; // } // //u is the node at a greater depth/lower level // //So we have to raise u to be at the same // //level as v. // int dist = level[u] - level[v] ; // while(dist > 0){ // int raise_by = log2(dist); // u = P[u][raise_by]; // dist -= (1<<raise_by) ; // } // // if(u == v){ // return u ; // } // // //Now we keep raising the two nodes by equal amount // //Untill each node has been raised uptill its (k-1)th ancestor // //Such that the (k)th ancestor is the lca. // //So to get the lca we just return the parent of (k-1)th ancestor // //of each node // // for(int j = MAXLOG ; j >= 0 ; --j){ // //Checking P[u][j] != P[v][j] because if P[u][j] == P[v][j] // //P[u][j] would be the Lth ancestor such that (L >= k) // //where kth ancestor is the LCA // //But we want the (k-1)th ancestor. // if((P[u][j] != -1) and (P[u][j] != P[v][j])){ // u = P[u][j] ; // v = P[v][j] ; // } // } // return parent[u] ; //or parent[v] // } //}