結果
問題 | No.498 ワープクリスタル (給料日編) |
ユーザー | anta |
提出日時 | 2017-03-24 22:32:32 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 16 ms / 2,000 ms |
コード長 | 3,128 bytes |
コンパイル時間 | 1,535 ms |
コンパイル使用メモリ | 172,132 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-06 03:04:52 |
合計ジャッジ時間 | 2,435 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 16 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 15 ms
5,376 KB |
testcase_07 | AC | 15 ms
5,376 KB |
testcase_08 | AC | 15 ms
5,376 KB |
testcase_09 | AC | 15 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 8 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 7 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 16 ms
5,376 KB |
testcase_19 | AC | 16 ms
5,376 KB |
testcase_20 | AC | 15 ms
5,376 KB |
testcase_21 | AC | 16 ms
5,376 KB |
testcase_22 | AC | 16 ms
5,376 KB |
testcase_23 | AC | 15 ms
5,376 KB |
testcase_24 | AC | 15 ms
5,376 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll; template<typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; } template<typename T, typename U> static void amax(T &x, U y) { if (x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) { } ModInt(signed sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while (b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if (u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; typedef ModInt<1000000007> mint; vector<mint> fact, factinv; void nCr_computeFactinv(int N) { N = min(N, mint::Mod - 1); fact.resize(N + 1); factinv.resize(N + 1); fact[0] = 1; rer(i, 1, N) fact[i] = fact[i - 1] * i; factinv[N] = fact[N].inverse(); for (int i = N; i >= 1; i --) factinv[i - 1] = factinv[i] * i; } mint nCr(int n, int r) { if (n >= mint::Mod) return nCr(n % mint::Mod, r % mint::Mod) * nCr(n / mint::Mod, r / mint::Mod); return r > n ? 0 : fact[n] * factinv[n - r] * factinv[r]; } int main() { int Gx; int Gy; int K; while (~scanf("%d%d%d", &Gx, &Gy, &K)) { nCr_computeFactinv(K * 15); vector<int> xs(K), ys(K), ns(K); rep(i, K) { int x; int y; int n; scanf("%d%d%d", &x, &y, &n); xs[i] = x, ys[i] = y, ns[i] = n; } mint ans; rep(S, 1 << (K * 4)) { mint prod = 1; int p = 0; int X = 0, Y = 0; rep(i, K) { int n = S >> (i * 4) & 15; if (n > ns[i]) { prod = mint(); break; } prod *= factinv[n]; p += n; X += xs[i] * n; Y += ys[i] * n; } if (X == Gx && Y == Gy) { prod *= fact[p]; ans += prod; } } printf("%d\n", ans.get()); } return 0; }