結果
問題 | No.498 ワープクリスタル (給料日編) |
ユーザー | femto |
提出日時 | 2017-03-24 23:59:45 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 9 ms / 2,000 ms |
コード長 | 3,254 bytes |
コンパイル時間 | 1,513 ms |
コンパイル使用メモリ | 172,468 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-06 02:16:26 |
合計ジャッジ時間 | 2,370 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,812 KB |
testcase_01 | AC | 3 ms
6,812 KB |
testcase_02 | AC | 4 ms
6,812 KB |
testcase_03 | AC | 3 ms
6,812 KB |
testcase_04 | AC | 8 ms
6,940 KB |
testcase_05 | AC | 4 ms
6,940 KB |
testcase_06 | AC | 8 ms
6,940 KB |
testcase_07 | AC | 7 ms
6,944 KB |
testcase_08 | AC | 8 ms
6,944 KB |
testcase_09 | AC | 8 ms
6,944 KB |
testcase_10 | AC | 3 ms
6,940 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 4 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,944 KB |
testcase_14 | AC | 3 ms
6,940 KB |
testcase_15 | AC | 4 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,944 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 9 ms
6,940 KB |
testcase_19 | AC | 8 ms
6,944 KB |
testcase_20 | AC | 9 ms
6,944 KB |
testcase_21 | AC | 8 ms
6,944 KB |
testcase_22 | AC | 8 ms
6,944 KB |
testcase_23 | AC | 9 ms
6,940 KB |
testcase_24 | AC | 8 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int mod = 1000000007; // assert mod is prime template<int M> struct Mint { int x; Mint() : x(0) {} Mint(int y) : x(y >= 0 ? y % M : M - (-y) % M) {} Mint &operator += (const Mint &rhs) { if((x += rhs.x) >= M) x -= M; return *this; } Mint &operator -= (const Mint &rhs) { if((x += M - rhs.x) >= M) x -= M; return *this; } Mint &operator *= (const Mint &rhs) { x = 1LL * x*rhs.x % M; return *this; } Mint &operator /= (const Mint &rhs) { x = (1LL * x*rhs.inv().x) % M; return *this; } Mint operator - () const { return Mint(-x); } Mint operator + (const Mint &rhs) const { return Mint(*this) += rhs; } Mint operator - (const Mint &rhs) const { return Mint(*this) -= rhs; } Mint operator * (const Mint &rhs) const { return Mint(*this) *= rhs; } Mint operator / (const Mint &rhs) const { return Mint(*this) /= rhs; } bool operator < (const Mint &rhs) const { return x < rhs.x; } Mint inv() const { signed a = x, b = M, u = 1, v = 0, t; while(b) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return Mint(u); } Mint pow(long long t) const { Mint e = *this, res = 1; for(; t; e *= e, t >>= 1) if(t & 1) res *= e; return res; } }; template <int M> ostream &operator << (ostream &os, const Mint<M> &rhs) { return os << rhs.x; } template <int M> istream &operator >> (istream &is, Mint<M> &rhs) { long long s; is >> s; rhs = Mint<M>(s); return is; }; using mint = Mint<mod>; ll modpow(ll x, ll y, ll m) { if(y == 0) return 1; ll res = modpow(x, y / 2, m); return res * res % m * (y & 1 ? x : 1) % m; } ll modinv(ll x, ll m) { return modpow(x, m - 2, m); } struct Comb { int sz; vector<mint> mfact, mfinv; Comb(int N) : sz(min(N, int(mod) - 1)), mfact(sz + 1), mfinv(sz + 1) { for(int i = 0; i <= sz; i++) mfact[i] = (i == 0 ? 1 : mfact[i - 1] * i); mfinv[sz] = mfact[sz].inv(); for(int i = sz; i >= 1; i--) mfinv[i - 1] = mfinv[i] * i; } mint fact(int n, int& e) { // e に p の指数が入る // Wilson の定理 e = 0; if(n <= sz) return mfact[n]; mint res = fact(n / mod, e); e += n / mod; if(n / mod % 2 != 0) return -res * mfact[n % mod]; return res * mfact[n % mod]; } mint nPr(int n, int r) { int e; return fact(n, e) / fact(n - r, e); } mint nCr(int n, int r) { // Lucus の定理 assert(n <= sz); if(n >= mod) return nCr(n%mod, r%mod) * nCr(n / mod, r / mod); return r > n ? 0 : mfact[n] * mfinv[n - r] * mfinv[r]; } mint nHr(int n, int r) { return r == 0 ? 1 : nCr(n + r - 1, r); } }; int N; int gx, gy; int X[5]; int Y[5]; int num[5]; int cur[5]; int sum; Comb C(100000); void dfs(int n, int x, int y, mint &ans) { if(n == N) { if(x == gx && y == gy) { int sum = 0; for(int i = 0; i < N; i++) { sum += cur[i]; } mint p = 1; for(int i = 0; i < N; i++) { p *= C.nCr(sum, cur[i]); sum -= cur[i]; } ans += p; } return; } for(int i = 0; i <= num[n]; i++) { cur[n] = i; dfs(n + 1, x + X[n] * i, y + Y[n] * i, ans); } } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> gx >> gy >> N; for(int i = 0; i < N; i++) { cin >> X[i] >> Y[i] >> num[i]; } mint ans = 0; dfs(0, 0, 0, ans); cout << ans << endl; }