結果
問題 | No.502 階乗を計算するだけ |
ユーザー |
![]() |
提出日時 | 2017-04-08 11:52:25 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 21,706 bytes |
コンパイル時間 | 1,295 ms |
コンパイル使用メモリ | 92,512 KB |
最終ジャッジ日時 | 2025-03-26 22:54:45 |
合計ジャッジ時間 | 2,247 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
In file included from /usr/include/c++/13/string:43, from /usr/include/c++/13/bits/locale_classes.h:40, from /usr/include/c++/13/bits/ios_base.h:41, from /usr/include/c++/13/ios:44, from /usr/include/c++/13/ostream:40, from /usr/include/c++/13/iostream:41, from main.cpp:10: /usr/include/c++/13/bits/allocator.h: In destructor ‘std::_Vector_base<int, std::allocator<int> >::_Vector_impl::~_Vector_impl()’: /usr/include/c++/13/bits/allocator.h:184:7: error: inlining failed in call to ‘always_inline’ ‘std::allocator< <template-parameter-1-1> >::~allocator() noexcept [with _Tp = int]’: target specific option mismatch 184 | ~allocator() _GLIBCXX_NOTHROW { } | ^ In file included from /usr/include/c++/13/vector:66, from main.cpp:11: /usr/include/c++/13/bits/stl_vector.h:133:14: note: called from here 133 | struct _Vector_impl | ^~~~~~~~~~~~
ソースコード
#pragma GCC optimize ("O3")#pragma GCC target ("avx")#include <cstdio>#include <cassert>#include <cmath>#include <cstring>#include <algorithm>#include <iostream>#include <vector>#include <functional>#ifdef __x86_64__#define NTT64#endif#define _rep(_1, _2, _3, _4, name, ...) name#define rep2(i, n) rep3(i, 0, n)#define rep3(i, a, b) rep4(i, a, b, 1)#define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c))#define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__)using namespace std;using i64 = long long;using u32 = unsigned;using u64 = unsigned long long;using f80 = long double;namespace ntt {#ifdef NTT64using word_t = u64;using dword_t = __uint128_t;#elseusing word_t = u32;using dword_t = u64;#endifstatic const int word_bits = 8 * sizeof(word_t);template <word_t mod, word_t prim_root>class Mod {private:static constexpr word_t mul_inv(word_t n, int e=6, word_t x=1) {return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n));}public:static constexpr word_t inv = mul_inv(mod);static constexpr word_t r2 = -dword_t(mod) % mod;static constexpr int level = __builtin_ctzll(mod - 1);static_assert(inv * mod == 1, "invalid 1/M modulo 2^@.");Mod() {}Mod(word_t n) : x(init(n)) {};static word_t modulus() { return mod; }static word_t init(word_t w) { return reduce(dword_t(w) * r2); }static word_t reduce(const dword_t w) { return word_t(w >> word_bits) + mod - word_t((dword_t(word_t(w) * inv) * mod) >> word_bits); }static Mod omega() { return Mod(prim_root).pow((mod - 1) >> level); }Mod& operator += (Mod rhs) { this->x += rhs.x; return *this; }Mod& operator -= (Mod rhs) { this->x += 3 * mod - rhs.x; return *this; }Mod& operator *= (Mod rhs) { this->x = reduce(dword_t(this->x) * rhs.x); return *this; }Mod operator + (Mod rhs) const { return Mod(*this) += rhs; }Mod operator - (Mod rhs) const { return Mod(*this) -= rhs; }Mod operator * (Mod rhs) const { return Mod(*this) *= rhs; }word_t get() const { return reduce(this->x) % mod; }void set(word_t n) const { this->x = n; }Mod pow(word_t exp) const {Mod ret = Mod(1);for (Mod base = *this; exp; exp >>= 1, base *= base) if (exp & 1) ret *= base;return ret;}Mod inverse() const { return pow(mod - 2); }friend ostream& operator << (ostream& os, const Mod& m) { return os << m.get(); }static void debug() {printf("%llu %llu %llu %llu\n", mod, inv, r2, omega().get());}word_t x;};const int size = 1 << 24;#ifdef NTT64using m64_1 = ntt::Mod<709143768229478401, 31>;using m64_2 = ntt::Mod<711416664922521601, 19>; // <= 712e15 (sub.D = 3)m64_1 f1[size], g1[size];m64_2 f2[size], g2[size];#elseusing m32_1 = ntt::Mod<138412033, 5>;using m32_2 = ntt::Mod<155189249, 6>;using m32_3 = ntt::Mod<163577857, 23>; // <= 16579e4 (sub.D = 3)m32_1 f1[size], g1[size];m32_2 f2[size], g2[size];m32_3 f3[size], g3[size];#endiftemplate <typename mod_t>void convolve(mod_t* A, int s1, mod_t* B, int s2, bool cyclic=false) {int s = (cyclic ? max(s1, s2) : s1 + s2 - 1);int size = 1;while (size < s) size <<= 1;mod_t roots[mod_t::level] = { mod_t::omega() };rep(i, 1, mod_t::level) roots[i] = roots[i - 1] * roots[i - 1];fill(A + s1, A + size, 0); ntt_dit4(A, size, 1, roots);if (A == B && s1 == s2) {rep(i, size) A[i] *= A[i];} else {fill(B + s2, B + size, 0); ntt_dit4(B, size, 1, roots);rep(i, size) A[i] *= B[i];}ntt_dit4(A, size, -1, roots);mod_t inv = mod_t(size).inverse();rep(i, cyclic ? size : s) A[i] *= inv;}template <typename mod_t>void rev_permute(mod_t* A, int n) {int r = 0, nh = n >> 1;rep(i, 1, n) {for (int h = nh; !((r ^= h) & h); h >>= 1);if (r > i) swap(A[i], A[r]);}}template <typename mod_t>void ntt_dit4(mod_t* A, int n, int sign, mod_t* roots) {rev_permute(A, n);int logn = __builtin_ctz(n);assert(logn <= mod_t::level);if (logn & 1) rep(i, 0, n, 2) {mod_t a = A[i], b = A[i + 1];A[i] = a + b; A[i + 1] = a - b;}mod_t imag = roots[mod_t::level - 2];if (sign < 0) imag = imag.inverse();mod_t one = mod_t(1);rep(e, 2 + (logn & 1), logn + 1, 2) {const int m = 1 << e;const int m4 = m >> 2;mod_t dw = roots[mod_t::level - e];if (sign < 0) dw = dw.inverse();const int block_size = min(n, max(m, (1 << 15) / int(sizeof(A[0]))));rep(k, 0, n, block_size) {mod_t w = one, w2 = one, w3 = one;rep(j, m4) {rep(i, k + j, k + block_size, m) {mod_t a0 = A[i + m4 * 0] * one, a2 = A[i + m4 * 1] * w2;mod_t a1 = A[i + m4 * 2] * w, a3 = A[i + m4 * 3] * w3;mod_t t02 = a0 + a2, t13 = a1 + a3;A[i + m4 * 0] = t02 + t13; A[i + m4 * 2] = t02 - t13;t02 = a0 - a2, t13 = (a1 - a3) * imag;A[i + m4 * 1] = t02 + t13; A[i + m4 * 3] = t02 - t13;}w *= dw; w2 = w * w; w3 = w2 * w;}}}}} // namespace nttusing R = int;using R64 = i64;class poly {public:#ifdef NTT64static const int ntt_threshold = 900; // deg(f * g)static const int quotient_threshold = 1800; // deg(f)static const int divrem_threshold = 700; // deg(f)static const int divrem_pre_threshold = 1600; // deg(f)#elsestatic const int ntt_threshold = 1500; // deg(f * g)static const int quotient_threshold = 1500; // deg(f)static const int divrem_threshold = 800; // deg(f)static const int divrem_pre_threshold = 1600; // deg(f)#endifstatic R add_mod(R a, R b) { return int(a += b - mod) < 0 ? a + mod : a; }static R sub_mod(R a, R b) { return int(a -= b) < 0 ? a + mod : a; }static R64 sub_mul_mod(R64 a, R b, R c) {i64 t = i64(a) - i64(int(b)) * int(c);return t < 0 ? t + lmod : t;}static R mul_mod(R a, R b) { return R64(a) * b % fast_mod; }static R mod_inv(R a) {R b = mod, s = 1, t = 0;while (b > 0) {swap(s -= t * (a / b), t);swap(a %= b, b);}if (a > 1) { fprintf(stderr, "Error: invalid modular inverse\n"); exit(1); };return int(s) < 0 ? s + mod : s;}inline static void vec_add(R64* res, int s, const R* f, R c) {rep(i, s) res[i] = sub_mul_mod(res[i], mod - c, f[i]);}inline static void vec_sub(R64* res, int s, const R* f, R c) {rep(i, s) res[i] = sub_mul_mod(res[i], c, f[i]);}#ifdef NTT64struct fast_div {using u128 = __uint128_t;fast_div() {}fast_div(u64 n) : m(n) {s = (n == 1) ? 0 : 127 - __builtin_clzll(n - 1);x = ((u128(1) << s) + n - 1) / n;}friend u64 operator / (u64 n, fast_div d) { return u128(n) * d.x >> d.s; }friend u64 operator % (u64 n, fast_div d) { return n - n / d * d.m; }u64 m, s, x;};#elsestruct fast_div {fast_div() {}fast_div(u32 n) : m(n) {}friend u32 operator % (u64 n, fast_div d) { return n % d.m; }u32 m;};#endifpublic:poly() {}poly(int n) : coefs(n) {}poly(int n, int c) : coefs(n, c % mod) {}poly(const R* ar, int s) : coefs(ar, ar + s) {}poly(const vector<R>& v) : coefs(v) {}poly(const poly& f, int beg, int end=-1) {if (end < 0) end = beg, beg = 0;resize(end - beg);rep(i, beg, end) if (i < f.size()) coefs[i - beg] = f[i];}static int ilog2(u64 n) {return 63 - __builtin_clzll(n);}int size() const { return coefs.size(); }void resize(int s) { coefs.resize(s); }void push_back(R c) { coefs.push_back(c); }const R* data() const { return coefs.data(); }R* data() { return coefs.data(); }const R& operator [] (int i) const { return coefs[i]; }R& operator [] (int i) { return coefs[i]; }void reverse() { std::reverse(coefs.begin(), coefs.end()); }poly operator - () {poly ret = *this;rep(i, ret.size()) ret[i] = (ret[i] == 0 ? 0 : mod - ret[i]);return ret;}poly& operator += (const poly& rhs) {if (size() < rhs.size()) resize(rhs.size());rep(i, rhs.size()) coefs[i] = add_mod(coefs[i], rhs[i]);return *this;}poly& operator -= (const poly& rhs) {if (size() < rhs.size()) resize(rhs.size());rep(i, rhs.size()) coefs[i] = sub_mod(coefs[i], rhs[i]);return *this;}poly& operator *= (const poly& rhs) { return *this = *this * rhs; }poly& rev_add(const poly& rhs) {if (size() < rhs.size()) {int s = size();resize(rhs.size());rep(i, s) coefs[size() - 1 - i] = coefs[s - 1 - i];rep(i, size() - s) coefs[i] = 0;}rep(i, rhs.size()) coefs[size() - 1 - i] = \add_mod(coefs[size() - 1 - i], rhs.coefs[rhs.size() - 1 - i]);return *this;}poly operator + (const poly& rhs) const { return poly(*this) += rhs; }poly operator - (const poly& rhs) const { return poly(*this) -= rhs; }poly operator * (const poly& rhs) const { return this->mul(rhs); }static void set_mod(R m, int N=2) {mod = m;lmod = R64(m) << 32;N = max(2, N);fast_mod = fast_div(mod);invs.assign(N, 1);facts.assign(N, 1);ifacts.assign(N, 1);invs[1] = 1;rep(i, 2, N + 1) {invs[i] = mul_mod(invs[mod % i], mod - mod / i);facts[i] = mul_mod(facts[i - 1], i);ifacts[i] = mul_mod(ifacts[i - 1], invs[i]);}}private:#ifdef NTT64static poly mul_crt(int beg, int end) {using namespace ntt;auto inv = m64_2(m64_1::modulus()).inverse();auto mod1 = m64_1::modulus() % fast_mod;poly ret(end - beg);rep(i, ret.size()) {u64 r1 = f1[i + beg].get(), r2 = f2[i + beg].get();ret[i] = (r1 + (m64_2(r2 + m64_2::modulus() - r1) * inv).get() % fast_mod * mod1) % fast_mod;}return ret;}static void mul2(const poly& f, const poly& g, bool cyclic=false) {using namespace ntt;if (&f == &g) {rep(i, f.size()) f1[i] = f[i];convolve(f1, f.size(), f1, f.size(), cyclic);rep(i, f.size()) f2[i] = f[i];convolve(f2, f.size(), f2, f.size(), cyclic);} else {rep(i, f.size()) f1[i] = f[i]; rep(i, g.size()) g1[i] = g[i];convolve(f1, f.size(), g1, g.size(), cyclic);rep(i, f.size()) f2[i] = f[i]; rep(i, g.size()) g2[i] = g[i];convolve(f2, f.size(), g2, g.size(), cyclic);}}#elsestatic poly mul_crt(int beg, int end) {using namespace ntt;auto m1 = m32_1::modulus();auto m2 = m32_2::modulus();auto m3 = m32_3::modulus();auto m12 = u64(m1) * m2;poly ret(end - beg);u32 m12m = m12 % mod;u32 inv1 = m32_2(m1).inverse().get();u32 inv12 = m32_3(m12 % m3).inverse().get();rep(i, ret.size()) {u32 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(), r3 = f3[i + beg].get();u64 r = r1 + u64(r2 + m2 - r1) * inv1 % m2 * m1;ret[i] = (r + u64(r3 + m3 - r % m3) * inv12 % m3 * m12m) % mod;}return ret;}static void mul2(const poly& f, const poly& g, bool cyclic=false) {using namespace ntt;if (&f == &g) {rep(i, f.size()) f1[i] = f[i] % m32_1::modulus();convolve(f1, f.size(), f1, f.size(), cyclic);rep(i, f.size()) f2[i] = f[i] % m32_2::modulus();convolve(f2, f.size(), f2, f.size(), cyclic);rep(i, f.size()) f3[i] = f[i] % m32_3::modulus();convolve(f3, f.size(), f3, f.size(), cyclic);} else {rep(i, f.size()) f1[i] = f[i] % m32_1::modulus();rep(i, g.size()) g1[i] = g[i] % m32_1::modulus();convolve(f1, f.size(), g1, g.size(), cyclic);rep(i, f.size()) f2[i] = f[i] % m32_2::modulus();rep(i, g.size()) g2[i] = g[i] % m32_2::modulus();convolve(f2, f.size(), g2, g.size(), cyclic);rep(i, f.size()) f3[i] = f[i] % m32_3::modulus();rep(i, g.size()) g3[i] = g[i] % m32_3::modulus();convolve(f3, f.size(), g3, g.size(), cyclic);}}#endifpublic:static void amul(const R* f, int s1, const R* g, int s2, R* res) {int s = s1 + s2 - 1;tmp64.assign(s, 0);rep(i, s2) if (g[i]) vec_add(tmp64.data() + i, s1, f, g[i]);rep(i, s) res[i] = tmp64[i] % fast_mod;}static void aquotient(const R* f, int s1, const R* g, int s2, R* res) {tmp64.resize(s1);rep(i, s1) tmp64[i] = f[i];rep(i, s1) {R c = tmp64[i] % mod;if (c) vec_sub(tmp64.data() + i + 1, min(s1 - i, s2) - 1, g + 1, c);res[i] = c;}}static void adivrem(const R* f, int s1, const R* g, int s2, R* q, R* r, bool need_r=true) {int sq = s1 - s2 + 1;tmp64.resize(s1);rep(i, s1) tmp64[i] = f[i];R inv = mod_inv(g[0]);rep(i, sq) {R c = tmp64[i] % mod * inv % mod;if (c) vec_sub(tmp64.data() + i + 1, s2 - 1, g + 1, c);q[i] = c;}if (need_r) rep(i, sq, s1) r[i - sq] = tmp64[i] % fast_mod;}poly mul_basecase(const poly& g) const {const auto& f = *this;int s = size() + g.size() - 1;poly ret(s);amul(f.data(), f.size(), g.data(), g.size(), ret.data());return ret;}poly quotient_basecase(const poly& g) const {const auto& f = *this;int s = size();poly q(s);aquotient(f.data(), f.size(), g.data(), g.size(), q.data());return q;}pair<poly, poly> divrem_basecase(const poly& g) const {const auto& f = *this;int s1 = f.size(), s2 = g.size();int sq = s1 - s2 + 1;auto q = poly(sq), r = poly(g.size() - 1);adivrem(f.data(), s1, g.data(), s2, q.data(), r.data());return make_pair(q, r);}// 1.0 * M(n)poly mul(const poly& g) const {const auto& f = *this;if (f.size() == 0 || g.size() == 0) return poly();if (f.size() + g.size() <= ntt_threshold) {return f.mul_basecase(g);} else {mul2(f, g, false);return mul_crt(0, f.size() + g.size() - 1);}}// 0.5 * M(n)poly mul_cyclically(const poly& g) const {const auto& f = *this;if (f.size() == 0 || g.size() == 0) return poly();mul2(f, g, true);int s = max(f.size(), g.size()), size = 1;while (size < s) size <<= 1;return mul_crt(0, size);}// 1.0 * M(n)poly middle_product(const poly& g) const {const poly& f = *this;if (f.size() == 0 || g.size() == 0) return poly();mul2(f, g, true);return mul_crt(f.size(), g.size());}// 2.0 * M(n)poly inverse(int prec=-1) const {if (prec < 0) prec = size();poly ret(1, 1);for (int e = 1, ne; e < prec; e = ne) {ne = min(2 * e, prec);poly h = poly(ret, ne - e) * -ret.middle_product(poly(*this, ne));rep(i, e, ne) ret.push_back(h[i - e]);}return ret;}// 2.5 * M(n)poly quotient(const poly& b) const {assert(size() == b.size());if (b.size() < quotient_threshold) {return quotient_basecase(b);}int s = size() / 2 + 1;poly inv = b.inverse(s);poly q1 = poly(poly(*this, s) * inv, s);poly lo = q1.middle_product(b);poly q2 = poly(inv, size() - s) * (poly(*this, s, size()) - lo);rep(i, size() - s) q1.push_back(q2[i]);return q1;}// 0.5 * M(n) : f - q * dstatic poly sub_mul(const poly& f, const poly& q, const poly& d) {int sq = q.size();poly p = q.mul_cyclically(d);int mask = p.size() - 1;rep(i, sq) p[i & mask] = sub_mod(p[i & mask], f[i & mask]);poly r = poly(f, sq, f.size());rep(i, r.size()) r[i] = sub_mod(r[i], p[(sq + i) & mask]);return r;}// 3.0 * M(n)pair<poly, poly> divrem(const poly& b) const {if (size() < b.size()) return make_pair(poly(), poly(*this));if (size() < divrem_threshold) {return divrem_basecase(b);}assert(size() < 2 * b.size());int sq = size() - b.size() + 1;poly q = poly(*this, sq).quotient(poly(b, sq));poly r = sub_mul(*this, q, b);return make_pair(q, r);}// 3.0 * M(n)poly rem(const poly& b) const {return divrem(b).second;}// 1.5 * M(n)pair<poly, poly> divrem_pre(const poly& b, const poly& inv) const {if (size() < b.size()) {return make_pair(poly(), poly(*this));}if (size() < divrem_pre_threshold) {return divrem_basecase(b);}int sq = size() - b.size() + 1;assert(size() >= sq && inv.size() >= sq);poly q = poly(poly(*this, sq) * poly(inv, sq), sq);poly r = sub_mul(*this, q, b);return make_pair(q, r);}// 1.5 * M(n)poly rem_pre(const poly& f, const poly& inv) const {return divrem_pre(f, inv).second;}// 2.5 * M(n) : Z/pZpoly log() const {assert(size() <= int(invs.size()));assert(coefs[0] == 1);poly ret = poly(*this);rep(i, ret.size() - 1) ret[i] = mul_mod(ret[i + 1], i + 1);ret = ret.quotient(*this);for (int i = ret.size() - 1; i > 0; --i) ret[i] = mul_mod(ret[i - 1], invs[i]);ret[0] = 0;return ret;}// 4.0 * M(n) : Z/pZpoly exp() const {assert(size() <= int(invs.size()));assert(coefs[0] == 0);poly expf = poly(1, 1);poly expfr = poly(1, 1);poly df = poly(*this);rep(i, df.size() - 1) df[i] = mul_mod(df[i + 1], i + 1);for (int e = 1, pe = 1, ne; e < size(); pe = e, e = ne) {ne = min(2 * e, size());poly tmp = expfr * expfr.middle_product(expf);rep(i, e - pe) expfr.push_back((mod - tmp[i]) % fast_mod);poly q = expfr * poly(expf * poly(df, e - 1), e - 1, ne - 1);tmp.resize(0);rep(i, e, ne) tmp.push_back((coefs[i] + mul_mod(q[i - e], invs[i])) % fast_mod);tmp = tmp * expf;rep(i, ne - e) expf.push_back(tmp[i]);}return expf;}// 13/6 * M(n) * log_2(e) : x^e (mod f)static poly x_pow_mod(u64 e, const poly& f) {if (e == 0) return poly(1, 1);poly ret = poly(vector<R>({1, 0}));poly inv = f.inverse(f.size());ret = ret.rem_pre(f, inv);u64 mask = (u64(1) << ilog2(e)) >> 1;while (mask) {ret *= ret;if (e & mask) ret.push_back(0);ret = ret.rem_pre(f, inv);mask >>= 1;}return ret;}// O(n^2) : Z/pZpoly mod_inverse(const poly& g) const {auto& f = *this;assert(f.size() < g.size());int s1 = g.size(), s2 = f.size();int t1 = 0, t2 = 1;tmp32.resize(s1 * 4);R* b1 = tmp32.data(), *b2 = b1 + s1;R* c1 = b2 + s1, *c2 = c1 + s1;c1[0] = 0, c2[0] = 1;copy(g.data(), g.data() + s1, b1);copy(f.data(), f.data() + s2, b2);while (1) {while (s2 > 0 && *b2 == 0) --s2, ++b2;if (s2 == 0) break;int s3 = s2 - 1, sq = s1 - s2 + 1, t3 = s1 - s2 + t2;R* b3 = b1 + sq, *c3 = c1;adivrem(b1, s1, b2, s2, b1, b3);tmp64.assign(t3, 0);rep(i, t1) tmp64[t3 - 1 - i] = c1[t1 - 1 - i];rep(i, sq) if (b1[i]) vec_sub(tmp64.data() + i, t2, c2, b1[i]);rep(i, t3) c3[i] = tmp64[i] % fast_mod;b1 = b2; b2 = b3; s1 = s2; s2 = s3;c1 = c2; c2 = c3; t1 = t2; t2 = t3;}if (s1 > 1) {fprintf(stderr, "Error: deg(gcd(f, g)) == %d.\n", s1 - 1);exit(1);}if (b1[0] != 1) {R inv = mod_inv(b1[0]);rep(i, t1) c1[i] = mul_mod(c1[i], inv);}return poly(c1, t1);}R evaluate(R x) const {R ret = 0;rep(i, size()) ret = (u64(ret) * x + coefs[i]) % fast_mod;return ret;}static poly expand(vector<R>& cs) {function< poly(int, int) > rec = [&](int beg, int end) {if (end - beg == 1) {return poly(vector<R>({1, cs[beg] % mod}));}int mid = (beg + end) / 2;return rec(beg, mid) * rec(mid, end);};return rec(0, cs.size());}static vector<R> multipoint_evaluation(const poly& f, vector<R>& points) {int s = points.size();int tree_size = 4 << ilog2(s - 1);vector<poly> tree(tree_size);function< void(int, int, int) > rec = [&](int beg, int end, int k) {if (end - beg == 1) {tree[k] = poly(vector<R>({1, (mod - points[beg] % mod) % mod}));} else {int mid = (beg + end) >> 1;rec(beg, mid, 2 * k + 1);rec(mid, end, 2 * k + 2);tree[k] = tree[2 * k + 1] * tree[2 * k + 2];}};rec(0, s, 0);vector<R> res(s);function< void(const poly&, int, int, int) > rec2 = [&](const poly& g, int beg, int end, int k) {auto r = g.rem(tree[k]);if (end - beg <= 16) {rep(i, beg, end) res[i] = r.evaluate(points[i]);} else {int mid = (beg + end) >> 1;rec2(r, beg, mid, 2 * k + 1);rec2(r, mid, end, 2 * k + 2);}};rec2(f, 0, s, 0);return res;}static R fact_mod(int N) {if (N >= mod) return 0;if (N <= 1) return 1 % mod;int v = sqrt(N);vector<R> cs(v);rep(i, v) cs[i] = (i * v + 1);auto f = expand(cs);rep(i, v) cs[i] = i;auto vs = multipoint_evaluation(f, cs);R ret = 1;rep(i, v) ret = mul_mod(ret, vs[i]);rep(i, v * v + 1, N + 1) ret = mul_mod(ret, i);return ret;}void print() const {printf("[");if (size()) {printf("%u", coefs[0]);rep(i, 1, size()) printf(", %u", coefs[i]);}puts("]");}public:vector<R> coefs;static vector<R> tmp32;static vector<R64> tmp64;static vector<R> invs, facts, ifacts;static R mod;static R64 lmod;static fast_div fast_mod;};R poly::mod;R64 poly::lmod;poly::fast_div poly::fast_mod;vector<R> poly::tmp32;vector<R64> poly::tmp64;vector<R> poly::invs, poly::facts, poly::ifacts;void solve() {const u32 mod = 1000000007;poly::set_mod(mod);i64 N;while (~scanf("%lld", &N)) {printf("%d\n", poly::fact_mod(min(i64(mod), N)));}}int main() {clock_t beg = clock();solve();clock_t end = clock();fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC);return 0;}