結果
問題 | No.502 階乗を計算するだけ |
ユーザー | Min_25 |
提出日時 | 2017-04-08 11:52:25 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 246 ms / 1,000 ms |
コード長 | 21,706 bytes |
コンパイル時間 | 3,439 ms |
コンパイル使用メモリ | 138,440 KB |
実行使用メモリ | 15,824 KB |
最終ジャッジ日時 | 2024-07-17 23:39:33 |
合計ジャッジ時間 | 6,646 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 5 ms
10,200 KB |
testcase_23 | AC | 3 ms
6,944 KB |
testcase_24 | AC | 4 ms
10,064 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 3 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 5 ms
10,072 KB |
testcase_31 | AC | 3 ms
6,940 KB |
testcase_32 | AC | 220 ms
14,788 KB |
testcase_33 | AC | 238 ms
15,560 KB |
testcase_34 | AC | 194 ms
14,380 KB |
testcase_35 | AC | 102 ms
12,564 KB |
testcase_36 | AC | 228 ms
15,308 KB |
testcase_37 | AC | 211 ms
14,776 KB |
testcase_38 | AC | 243 ms
15,696 KB |
testcase_39 | AC | 241 ms
15,180 KB |
testcase_40 | AC | 77 ms
11,904 KB |
testcase_41 | AC | 246 ms
15,824 KB |
testcase_42 | AC | 1 ms
6,940 KB |
testcase_43 | AC | 2 ms
6,940 KB |
testcase_44 | AC | 2 ms
6,944 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 1 ms
6,940 KB |
testcase_47 | AC | 1 ms
6,944 KB |
testcase_48 | AC | 2 ms
6,944 KB |
testcase_49 | AC | 2 ms
6,940 KB |
testcase_50 | AC | 1 ms
6,940 KB |
testcase_51 | AC | 2 ms
6,944 KB |
ソースコード
#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include <cstdio> #include <cassert> #include <cmath> #include <cstring> #include <algorithm> #include <iostream> #include <vector> #include <functional> #ifdef __x86_64__ #define NTT64 #endif #define _rep(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i64 = long long; using u32 = unsigned; using u64 = unsigned long long; using f80 = long double; namespace ntt { #ifdef NTT64 using word_t = u64; using dword_t = __uint128_t; #else using word_t = u32; using dword_t = u64; #endif static const int word_bits = 8 * sizeof(word_t); template <word_t mod, word_t prim_root> class Mod { private: static constexpr word_t mul_inv(word_t n, int e=6, word_t x=1) { return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n)); } public: static constexpr word_t inv = mul_inv(mod); static constexpr word_t r2 = -dword_t(mod) % mod; static constexpr int level = __builtin_ctzll(mod - 1); static_assert(inv * mod == 1, "invalid 1/M modulo 2^@."); Mod() {} Mod(word_t n) : x(init(n)) {}; static word_t modulus() { return mod; } static word_t init(word_t w) { return reduce(dword_t(w) * r2); } static word_t reduce(const dword_t w) { return word_t(w >> word_bits) + mod - word_t((dword_t(word_t(w) * inv) * mod) >> word_bits); } static Mod omega() { return Mod(prim_root).pow((mod - 1) >> level); } Mod& operator += (Mod rhs) { this->x += rhs.x; return *this; } Mod& operator -= (Mod rhs) { this->x += 3 * mod - rhs.x; return *this; } Mod& operator *= (Mod rhs) { this->x = reduce(dword_t(this->x) * rhs.x); return *this; } Mod operator + (Mod rhs) const { return Mod(*this) += rhs; } Mod operator - (Mod rhs) const { return Mod(*this) -= rhs; } Mod operator * (Mod rhs) const { return Mod(*this) *= rhs; } word_t get() const { return reduce(this->x) % mod; } void set(word_t n) const { this->x = n; } Mod pow(word_t exp) const { Mod ret = Mod(1); for (Mod base = *this; exp; exp >>= 1, base *= base) if (exp & 1) ret *= base; return ret; } Mod inverse() const { return pow(mod - 2); } friend ostream& operator << (ostream& os, const Mod& m) { return os << m.get(); } static void debug() { printf("%llu %llu %llu %llu\n", mod, inv, r2, omega().get()); } word_t x; }; const int size = 1 << 24; #ifdef NTT64 using m64_1 = ntt::Mod<709143768229478401, 31>; using m64_2 = ntt::Mod<711416664922521601, 19>; // <= 712e15 (sub.D = 3) m64_1 f1[size], g1[size]; m64_2 f2[size], g2[size]; #else using m32_1 = ntt::Mod<138412033, 5>; using m32_2 = ntt::Mod<155189249, 6>; using m32_3 = ntt::Mod<163577857, 23>; // <= 16579e4 (sub.D = 3) m32_1 f1[size], g1[size]; m32_2 f2[size], g2[size]; m32_3 f3[size], g3[size]; #endif template <typename mod_t> void convolve(mod_t* A, int s1, mod_t* B, int s2, bool cyclic=false) { int s = (cyclic ? max(s1, s2) : s1 + s2 - 1); int size = 1; while (size < s) size <<= 1; mod_t roots[mod_t::level] = { mod_t::omega() }; rep(i, 1, mod_t::level) roots[i] = roots[i - 1] * roots[i - 1]; fill(A + s1, A + size, 0); ntt_dit4(A, size, 1, roots); if (A == B && s1 == s2) { rep(i, size) A[i] *= A[i]; } else { fill(B + s2, B + size, 0); ntt_dit4(B, size, 1, roots); rep(i, size) A[i] *= B[i]; } ntt_dit4(A, size, -1, roots); mod_t inv = mod_t(size).inverse(); rep(i, cyclic ? size : s) A[i] *= inv; } template <typename mod_t> void rev_permute(mod_t* A, int n) { int r = 0, nh = n >> 1; rep(i, 1, n) { for (int h = nh; !((r ^= h) & h); h >>= 1); if (r > i) swap(A[i], A[r]); } } template <typename mod_t> void ntt_dit4(mod_t* A, int n, int sign, mod_t* roots) { rev_permute(A, n); int logn = __builtin_ctz(n); assert(logn <= mod_t::level); if (logn & 1) rep(i, 0, n, 2) { mod_t a = A[i], b = A[i + 1]; A[i] = a + b; A[i + 1] = a - b; } mod_t imag = roots[mod_t::level - 2]; if (sign < 0) imag = imag.inverse(); mod_t one = mod_t(1); rep(e, 2 + (logn & 1), logn + 1, 2) { const int m = 1 << e; const int m4 = m >> 2; mod_t dw = roots[mod_t::level - e]; if (sign < 0) dw = dw.inverse(); const int block_size = min(n, max(m, (1 << 15) / int(sizeof(A[0])))); rep(k, 0, n, block_size) { mod_t w = one, w2 = one, w3 = one; rep(j, m4) { rep(i, k + j, k + block_size, m) { mod_t a0 = A[i + m4 * 0] * one, a2 = A[i + m4 * 1] * w2; mod_t a1 = A[i + m4 * 2] * w, a3 = A[i + m4 * 3] * w3; mod_t t02 = a0 + a2, t13 = a1 + a3; A[i + m4 * 0] = t02 + t13; A[i + m4 * 2] = t02 - t13; t02 = a0 - a2, t13 = (a1 - a3) * imag; A[i + m4 * 1] = t02 + t13; A[i + m4 * 3] = t02 - t13; } w *= dw; w2 = w * w; w3 = w2 * w; } } } } } // namespace ntt using R = int; using R64 = i64; class poly { public: #ifdef NTT64 static const int ntt_threshold = 900; // deg(f * g) static const int quotient_threshold = 1800; // deg(f) static const int divrem_threshold = 700; // deg(f) static const int divrem_pre_threshold = 1600; // deg(f) #else static const int ntt_threshold = 1500; // deg(f * g) static const int quotient_threshold = 1500; // deg(f) static const int divrem_threshold = 800; // deg(f) static const int divrem_pre_threshold = 1600; // deg(f) #endif static R add_mod(R a, R b) { return int(a += b - mod) < 0 ? a + mod : a; } static R sub_mod(R a, R b) { return int(a -= b) < 0 ? a + mod : a; } static R64 sub_mul_mod(R64 a, R b, R c) { i64 t = i64(a) - i64(int(b)) * int(c); return t < 0 ? t + lmod : t; } static R mul_mod(R a, R b) { return R64(a) * b % fast_mod; } static R mod_inv(R a) { R b = mod, s = 1, t = 0; while (b > 0) { swap(s -= t * (a / b), t); swap(a %= b, b); } if (a > 1) { fprintf(stderr, "Error: invalid modular inverse\n"); exit(1); }; return int(s) < 0 ? s + mod : s; } inline static void vec_add(R64* res, int s, const R* f, R c) { rep(i, s) res[i] = sub_mul_mod(res[i], mod - c, f[i]); } inline static void vec_sub(R64* res, int s, const R* f, R c) { rep(i, s) res[i] = sub_mul_mod(res[i], c, f[i]); } #ifdef NTT64 struct fast_div { using u128 = __uint128_t; fast_div() {} fast_div(u64 n) : m(n) { s = (n == 1) ? 0 : 127 - __builtin_clzll(n - 1); x = ((u128(1) << s) + n - 1) / n; } friend u64 operator / (u64 n, fast_div d) { return u128(n) * d.x >> d.s; } friend u64 operator % (u64 n, fast_div d) { return n - n / d * d.m; } u64 m, s, x; }; #else struct fast_div { fast_div() {} fast_div(u32 n) : m(n) {} friend u32 operator % (u64 n, fast_div d) { return n % d.m; } u32 m; }; #endif public: poly() {} poly(int n) : coefs(n) {} poly(int n, int c) : coefs(n, c % mod) {} poly(const R* ar, int s) : coefs(ar, ar + s) {} poly(const vector<R>& v) : coefs(v) {} poly(const poly& f, int beg, int end=-1) { if (end < 0) end = beg, beg = 0; resize(end - beg); rep(i, beg, end) if (i < f.size()) coefs[i - beg] = f[i]; } static int ilog2(u64 n) { return 63 - __builtin_clzll(n); } int size() const { return coefs.size(); } void resize(int s) { coefs.resize(s); } void push_back(R c) { coefs.push_back(c); } const R* data() const { return coefs.data(); } R* data() { return coefs.data(); } const R& operator [] (int i) const { return coefs[i]; } R& operator [] (int i) { return coefs[i]; } void reverse() { std::reverse(coefs.begin(), coefs.end()); } poly operator - () { poly ret = *this; rep(i, ret.size()) ret[i] = (ret[i] == 0 ? 0 : mod - ret[i]); return ret; } poly& operator += (const poly& rhs) { if (size() < rhs.size()) resize(rhs.size()); rep(i, rhs.size()) coefs[i] = add_mod(coefs[i], rhs[i]); return *this; } poly& operator -= (const poly& rhs) { if (size() < rhs.size()) resize(rhs.size()); rep(i, rhs.size()) coefs[i] = sub_mod(coefs[i], rhs[i]); return *this; } poly& operator *= (const poly& rhs) { return *this = *this * rhs; } poly& rev_add(const poly& rhs) { if (size() < rhs.size()) { int s = size(); resize(rhs.size()); rep(i, s) coefs[size() - 1 - i] = coefs[s - 1 - i]; rep(i, size() - s) coefs[i] = 0; } rep(i, rhs.size()) coefs[size() - 1 - i] = \ add_mod(coefs[size() - 1 - i], rhs.coefs[rhs.size() - 1 - i]); return *this; } poly operator + (const poly& rhs) const { return poly(*this) += rhs; } poly operator - (const poly& rhs) const { return poly(*this) -= rhs; } poly operator * (const poly& rhs) const { return this->mul(rhs); } static void set_mod(R m, int N=2) { mod = m; lmod = R64(m) << 32; N = max(2, N); fast_mod = fast_div(mod); invs.assign(N, 1); facts.assign(N, 1); ifacts.assign(N, 1); invs[1] = 1; rep(i, 2, N + 1) { invs[i] = mul_mod(invs[mod % i], mod - mod / i); facts[i] = mul_mod(facts[i - 1], i); ifacts[i] = mul_mod(ifacts[i - 1], invs[i]); } } private: #ifdef NTT64 static poly mul_crt(int beg, int end) { using namespace ntt; auto inv = m64_2(m64_1::modulus()).inverse(); auto mod1 = m64_1::modulus() % fast_mod; poly ret(end - beg); rep(i, ret.size()) { u64 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(); ret[i] = (r1 + (m64_2(r2 + m64_2::modulus() - r1) * inv).get() % fast_mod * mod1) % fast_mod; } return ret; } static void mul2(const poly& f, const poly& g, bool cyclic=false) { using namespace ntt; if (&f == &g) { rep(i, f.size()) f1[i] = f[i]; convolve(f1, f.size(), f1, f.size(), cyclic); rep(i, f.size()) f2[i] = f[i]; convolve(f2, f.size(), f2, f.size(), cyclic); } else { rep(i, f.size()) f1[i] = f[i]; rep(i, g.size()) g1[i] = g[i]; convolve(f1, f.size(), g1, g.size(), cyclic); rep(i, f.size()) f2[i] = f[i]; rep(i, g.size()) g2[i] = g[i]; convolve(f2, f.size(), g2, g.size(), cyclic); } } #else static poly mul_crt(int beg, int end) { using namespace ntt; auto m1 = m32_1::modulus(); auto m2 = m32_2::modulus(); auto m3 = m32_3::modulus(); auto m12 = u64(m1) * m2; poly ret(end - beg); u32 m12m = m12 % mod; u32 inv1 = m32_2(m1).inverse().get(); u32 inv12 = m32_3(m12 % m3).inverse().get(); rep(i, ret.size()) { u32 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(), r3 = f3[i + beg].get(); u64 r = r1 + u64(r2 + m2 - r1) * inv1 % m2 * m1; ret[i] = (r + u64(r3 + m3 - r % m3) * inv12 % m3 * m12m) % mod; } return ret; } static void mul2(const poly& f, const poly& g, bool cyclic=false) { using namespace ntt; if (&f == &g) { rep(i, f.size()) f1[i] = f[i] % m32_1::modulus(); convolve(f1, f.size(), f1, f.size(), cyclic); rep(i, f.size()) f2[i] = f[i] % m32_2::modulus(); convolve(f2, f.size(), f2, f.size(), cyclic); rep(i, f.size()) f3[i] = f[i] % m32_3::modulus(); convolve(f3, f.size(), f3, f.size(), cyclic); } else { rep(i, f.size()) f1[i] = f[i] % m32_1::modulus(); rep(i, g.size()) g1[i] = g[i] % m32_1::modulus(); convolve(f1, f.size(), g1, g.size(), cyclic); rep(i, f.size()) f2[i] = f[i] % m32_2::modulus(); rep(i, g.size()) g2[i] = g[i] % m32_2::modulus(); convolve(f2, f.size(), g2, g.size(), cyclic); rep(i, f.size()) f3[i] = f[i] % m32_3::modulus(); rep(i, g.size()) g3[i] = g[i] % m32_3::modulus(); convolve(f3, f.size(), g3, g.size(), cyclic); } } #endif public: static void amul(const R* f, int s1, const R* g, int s2, R* res) { int s = s1 + s2 - 1; tmp64.assign(s, 0); rep(i, s2) if (g[i]) vec_add(tmp64.data() + i, s1, f, g[i]); rep(i, s) res[i] = tmp64[i] % fast_mod; } static void aquotient(const R* f, int s1, const R* g, int s2, R* res) { tmp64.resize(s1); rep(i, s1) tmp64[i] = f[i]; rep(i, s1) { R c = tmp64[i] % mod; if (c) vec_sub(tmp64.data() + i + 1, min(s1 - i, s2) - 1, g + 1, c); res[i] = c; } } static void adivrem(const R* f, int s1, const R* g, int s2, R* q, R* r, bool need_r=true) { int sq = s1 - s2 + 1; tmp64.resize(s1); rep(i, s1) tmp64[i] = f[i]; R inv = mod_inv(g[0]); rep(i, sq) { R c = tmp64[i] % mod * inv % mod; if (c) vec_sub(tmp64.data() + i + 1, s2 - 1, g + 1, c); q[i] = c; } if (need_r) rep(i, sq, s1) r[i - sq] = tmp64[i] % fast_mod; } poly mul_basecase(const poly& g) const { const auto& f = *this; int s = size() + g.size() - 1; poly ret(s); amul(f.data(), f.size(), g.data(), g.size(), ret.data()); return ret; } poly quotient_basecase(const poly& g) const { const auto& f = *this; int s = size(); poly q(s); aquotient(f.data(), f.size(), g.data(), g.size(), q.data()); return q; } pair<poly, poly> divrem_basecase(const poly& g) const { const auto& f = *this; int s1 = f.size(), s2 = g.size(); int sq = s1 - s2 + 1; auto q = poly(sq), r = poly(g.size() - 1); adivrem(f.data(), s1, g.data(), s2, q.data(), r.data()); return make_pair(q, r); } // 1.0 * M(n) poly mul(const poly& g) const { const auto& f = *this; if (f.size() == 0 || g.size() == 0) return poly(); if (f.size() + g.size() <= ntt_threshold) { return f.mul_basecase(g); } else { mul2(f, g, false); return mul_crt(0, f.size() + g.size() - 1); } } // 0.5 * M(n) poly mul_cyclically(const poly& g) const { const auto& f = *this; if (f.size() == 0 || g.size() == 0) return poly(); mul2(f, g, true); int s = max(f.size(), g.size()), size = 1; while (size < s) size <<= 1; return mul_crt(0, size); } // 1.0 * M(n) poly middle_product(const poly& g) const { const poly& f = *this; if (f.size() == 0 || g.size() == 0) return poly(); mul2(f, g, true); return mul_crt(f.size(), g.size()); } // 2.0 * M(n) poly inverse(int prec=-1) const { if (prec < 0) prec = size(); poly ret(1, 1); for (int e = 1, ne; e < prec; e = ne) { ne = min(2 * e, prec); poly h = poly(ret, ne - e) * -ret.middle_product(poly(*this, ne)); rep(i, e, ne) ret.push_back(h[i - e]); } return ret; } // 2.5 * M(n) poly quotient(const poly& b) const { assert(size() == b.size()); if (b.size() < quotient_threshold) { return quotient_basecase(b); } int s = size() / 2 + 1; poly inv = b.inverse(s); poly q1 = poly(poly(*this, s) * inv, s); poly lo = q1.middle_product(b); poly q2 = poly(inv, size() - s) * (poly(*this, s, size()) - lo); rep(i, size() - s) q1.push_back(q2[i]); return q1; } // 0.5 * M(n) : f - q * d static poly sub_mul(const poly& f, const poly& q, const poly& d) { int sq = q.size(); poly p = q.mul_cyclically(d); int mask = p.size() - 1; rep(i, sq) p[i & mask] = sub_mod(p[i & mask], f[i & mask]); poly r = poly(f, sq, f.size()); rep(i, r.size()) r[i] = sub_mod(r[i], p[(sq + i) & mask]); return r; } // 3.0 * M(n) pair<poly, poly> divrem(const poly& b) const { if (size() < b.size()) return make_pair(poly(), poly(*this)); if (size() < divrem_threshold) { return divrem_basecase(b); } assert(size() < 2 * b.size()); int sq = size() - b.size() + 1; poly q = poly(*this, sq).quotient(poly(b, sq)); poly r = sub_mul(*this, q, b); return make_pair(q, r); } // 3.0 * M(n) poly rem(const poly& b) const { return divrem(b).second; } // 1.5 * M(n) pair<poly, poly> divrem_pre(const poly& b, const poly& inv) const { if (size() < b.size()) { return make_pair(poly(), poly(*this)); } if (size() < divrem_pre_threshold) { return divrem_basecase(b); } int sq = size() - b.size() + 1; assert(size() >= sq && inv.size() >= sq); poly q = poly(poly(*this, sq) * poly(inv, sq), sq); poly r = sub_mul(*this, q, b); return make_pair(q, r); } // 1.5 * M(n) poly rem_pre(const poly& f, const poly& inv) const { return divrem_pre(f, inv).second; } // 2.5 * M(n) : Z/pZ poly log() const { assert(size() <= int(invs.size())); assert(coefs[0] == 1); poly ret = poly(*this); rep(i, ret.size() - 1) ret[i] = mul_mod(ret[i + 1], i + 1); ret = ret.quotient(*this); for (int i = ret.size() - 1; i > 0; --i) ret[i] = mul_mod(ret[i - 1], invs[i]); ret[0] = 0; return ret; } // 4.0 * M(n) : Z/pZ poly exp() const { assert(size() <= int(invs.size())); assert(coefs[0] == 0); poly expf = poly(1, 1); poly expfr = poly(1, 1); poly df = poly(*this); rep(i, df.size() - 1) df[i] = mul_mod(df[i + 1], i + 1); for (int e = 1, pe = 1, ne; e < size(); pe = e, e = ne) { ne = min(2 * e, size()); poly tmp = expfr * expfr.middle_product(expf); rep(i, e - pe) expfr.push_back((mod - tmp[i]) % fast_mod); poly q = expfr * poly(expf * poly(df, e - 1), e - 1, ne - 1); tmp.resize(0); rep(i, e, ne) tmp.push_back((coefs[i] + mul_mod(q[i - e], invs[i])) % fast_mod); tmp = tmp * expf; rep(i, ne - e) expf.push_back(tmp[i]); } return expf; } // 13/6 * M(n) * log_2(e) : x^e (mod f) static poly x_pow_mod(u64 e, const poly& f) { if (e == 0) return poly(1, 1); poly ret = poly(vector<R>({1, 0})); poly inv = f.inverse(f.size()); ret = ret.rem_pre(f, inv); u64 mask = (u64(1) << ilog2(e)) >> 1; while (mask) { ret *= ret; if (e & mask) ret.push_back(0); ret = ret.rem_pre(f, inv); mask >>= 1; } return ret; } // O(n^2) : Z/pZ poly mod_inverse(const poly& g) const { auto& f = *this; assert(f.size() < g.size()); int s1 = g.size(), s2 = f.size(); int t1 = 0, t2 = 1; tmp32.resize(s1 * 4); R* b1 = tmp32.data(), *b2 = b1 + s1; R* c1 = b2 + s1, *c2 = c1 + s1; c1[0] = 0, c2[0] = 1; copy(g.data(), g.data() + s1, b1); copy(f.data(), f.data() + s2, b2); while (1) { while (s2 > 0 && *b2 == 0) --s2, ++b2; if (s2 == 0) break; int s3 = s2 - 1, sq = s1 - s2 + 1, t3 = s1 - s2 + t2; R* b3 = b1 + sq, *c3 = c1; adivrem(b1, s1, b2, s2, b1, b3); tmp64.assign(t3, 0); rep(i, t1) tmp64[t3 - 1 - i] = c1[t1 - 1 - i]; rep(i, sq) if (b1[i]) vec_sub(tmp64.data() + i, t2, c2, b1[i]); rep(i, t3) c3[i] = tmp64[i] % fast_mod; b1 = b2; b2 = b3; s1 = s2; s2 = s3; c1 = c2; c2 = c3; t1 = t2; t2 = t3; } if (s1 > 1) { fprintf(stderr, "Error: deg(gcd(f, g)) == %d.\n", s1 - 1); exit(1); } if (b1[0] != 1) { R inv = mod_inv(b1[0]); rep(i, t1) c1[i] = mul_mod(c1[i], inv); } return poly(c1, t1); } R evaluate(R x) const { R ret = 0; rep(i, size()) ret = (u64(ret) * x + coefs[i]) % fast_mod; return ret; } static poly expand(vector<R>& cs) { function< poly(int, int) > rec = [&](int beg, int end) { if (end - beg == 1) { return poly(vector<R>({1, cs[beg] % mod})); } int mid = (beg + end) / 2; return rec(beg, mid) * rec(mid, end); }; return rec(0, cs.size()); } static vector<R> multipoint_evaluation(const poly& f, vector<R>& points) { int s = points.size(); int tree_size = 4 << ilog2(s - 1); vector<poly> tree(tree_size); function< void(int, int, int) > rec = [&](int beg, int end, int k) { if (end - beg == 1) { tree[k] = poly(vector<R>({1, (mod - points[beg] % mod) % mod})); } else { int mid = (beg + end) >> 1; rec(beg, mid, 2 * k + 1); rec(mid, end, 2 * k + 2); tree[k] = tree[2 * k + 1] * tree[2 * k + 2]; } }; rec(0, s, 0); vector<R> res(s); function< void(const poly&, int, int, int) > rec2 = [&](const poly& g, int beg, int end, int k) { auto r = g.rem(tree[k]); if (end - beg <= 16) { rep(i, beg, end) res[i] = r.evaluate(points[i]); } else { int mid = (beg + end) >> 1; rec2(r, beg, mid, 2 * k + 1); rec2(r, mid, end, 2 * k + 2); } }; rec2(f, 0, s, 0); return res; } static R fact_mod(int N) { if (N >= mod) return 0; if (N <= 1) return 1 % mod; int v = sqrt(N); vector<R> cs(v); rep(i, v) cs[i] = (i * v + 1); auto f = expand(cs); rep(i, v) cs[i] = i; auto vs = multipoint_evaluation(f, cs); R ret = 1; rep(i, v) ret = mul_mod(ret, vs[i]); rep(i, v * v + 1, N + 1) ret = mul_mod(ret, i); return ret; } void print() const { printf("["); if (size()) { printf("%u", coefs[0]); rep(i, 1, size()) printf(", %u", coefs[i]); } puts("]"); } public: vector<R> coefs; static vector<R> tmp32; static vector<R64> tmp64; static vector<R> invs, facts, ifacts; static R mod; static R64 lmod; static fast_div fast_mod; }; R poly::mod; R64 poly::lmod; poly::fast_div poly::fast_mod; vector<R> poly::tmp32; vector<R64> poly::tmp64; vector<R> poly::invs, poly::facts, poly::ifacts; void solve() { const u32 mod = 1000000007; poly::set_mod(mod); i64 N; while (~scanf("%lld", &N)) { printf("%d\n", poly::fact_mod(min(i64(mod), N))); } } int main() { clock_t beg = clock(); solve(); clock_t end = clock(); fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC); return 0; }