結果
問題 | No.502 階乗を計算するだけ |
ユーザー | Min_25 |
提出日時 | 2017-04-08 20:16:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 56 ms / 1,000 ms |
コード長 | 16,066 bytes |
コンパイル時間 | 2,003 ms |
コンパイル使用メモリ | 119,356 KB |
実行使用メモリ | 18,560 KB |
最終ジャッジ日時 | 2024-07-17 23:55:26 |
合計ジャッジ時間 | 3,862 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 3 ms
9,928 KB |
testcase_05 | AC | 3 ms
9,924 KB |
testcase_06 | AC | 3 ms
10,052 KB |
testcase_07 | AC | 3 ms
10,060 KB |
testcase_08 | AC | 4 ms
10,056 KB |
testcase_09 | AC | 3 ms
9,928 KB |
testcase_10 | AC | 3 ms
10,056 KB |
testcase_11 | AC | 3 ms
10,056 KB |
testcase_12 | AC | 3 ms
10,184 KB |
testcase_13 | AC | 3 ms
9,928 KB |
testcase_14 | AC | 3 ms
9,932 KB |
testcase_15 | AC | 3 ms
9,928 KB |
testcase_16 | AC | 4 ms
10,056 KB |
testcase_17 | AC | 3 ms
9,932 KB |
testcase_18 | AC | 3 ms
9,932 KB |
testcase_19 | AC | 3 ms
9,928 KB |
testcase_20 | AC | 4 ms
10,056 KB |
testcase_21 | AC | 3 ms
9,932 KB |
testcase_22 | AC | 5 ms
9,940 KB |
testcase_23 | AC | 4 ms
9,936 KB |
testcase_24 | AC | 4 ms
10,072 KB |
testcase_25 | AC | 4 ms
9,928 KB |
testcase_26 | AC | 4 ms
9,936 KB |
testcase_27 | AC | 4 ms
9,932 KB |
testcase_28 | AC | 5 ms
10,060 KB |
testcase_29 | AC | 4 ms
10,192 KB |
testcase_30 | AC | 5 ms
9,940 KB |
testcase_31 | AC | 5 ms
9,936 KB |
testcase_32 | AC | 51 ms
10,724 KB |
testcase_33 | AC | 55 ms
10,804 KB |
testcase_34 | AC | 49 ms
10,692 KB |
testcase_35 | AC | 27 ms
10,360 KB |
testcase_36 | AC | 52 ms
10,760 KB |
testcase_37 | AC | 50 ms
10,700 KB |
testcase_38 | AC | 56 ms
10,688 KB |
testcase_39 | AC | 54 ms
10,896 KB |
testcase_40 | AC | 26 ms
18,560 KB |
testcase_41 | AC | 2 ms
6,940 KB |
testcase_42 | AC | 2 ms
6,944 KB |
testcase_43 | AC | 2 ms
6,940 KB |
testcase_44 | AC | 2 ms
6,940 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 2 ms
6,940 KB |
testcase_47 | AC | 2 ms
6,940 KB |
testcase_48 | AC | 2 ms
6,944 KB |
testcase_49 | AC | 2 ms
6,944 KB |
testcase_50 | AC | 2 ms
6,944 KB |
testcase_51 | AC | 2 ms
6,944 KB |
ソースコード
#pragma GCC optimize ("O3") #pragma GCC target ("avx") #include <cstdio> #include <cassert> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <map> #include <set> #include <functional> #include <stack> #include <queue> #include <tuple> #define getchar getchar_unlocked #define putchar putchar_unlocked #define _rep(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i8 = signed char; using i16 = short; using i64 = long long; using i128 = __int128_t; using u8 = unsigned char; using u32 = unsigned; using u64 = unsigned long long; using u128 = __uint128_t; using f80 = long double; #ifdef __x86_64__ #define NTT64 #endif #define _rep(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i64 = long long; using u32 = unsigned; using u64 = unsigned long long; using f80 = long double; namespace ntt { #ifdef NTT64 using word_t = u64; using dword_t = __uint128_t; #else using word_t = u32; using dword_t = u64; #endif static const int word_bits = 8 * sizeof(word_t); template <word_t mod, word_t prim_root> class Mod { private: static constexpr word_t mul_inv(word_t n, int e=6, word_t x=1) { return e == 0 ? x : mul_inv(n, e-1, x*(2-x*n)); } public: static constexpr word_t inv = mul_inv(mod); static constexpr word_t r2 = -dword_t(mod) % mod; static constexpr int level = __builtin_ctzll(mod - 1); static_assert(inv * mod == 1, "invalid 1/M modulo 2^@."); Mod() {} Mod(word_t n) : x(init(n)) {}; static word_t modulus() { return mod; } static word_t init(word_t w) { return reduce(dword_t(w) * r2); } static word_t reduce(const dword_t w) { return word_t(w >> word_bits) + mod - word_t((dword_t(word_t(w) * inv) * mod) >> word_bits); } static Mod omega() { return Mod(prim_root).pow((mod - 1) >> level); } Mod& operator += (Mod rhs) { this->x += rhs.x; return *this; } Mod& operator -= (Mod rhs) { this->x += 3 * mod - rhs.x; return *this; } Mod& operator *= (Mod rhs) { this->x = reduce(dword_t(this->x) * rhs.x); return *this; } Mod operator + (Mod rhs) const { return Mod(*this) += rhs; } Mod operator - (Mod rhs) const { return Mod(*this) -= rhs; } Mod operator * (Mod rhs) const { return Mod(*this) *= rhs; } word_t get() const { return reduce(this->x) % mod; } void set(word_t n) const { this->x = n; } Mod pow(word_t exp) const { Mod ret = Mod(1); for (Mod base = *this; exp; exp >>= 1, base *= base) if (exp & 1) ret *= base; return ret; } Mod inverse() const { return pow(mod - 2); } friend ostream& operator << (ostream& os, const Mod& m) { return os << m.get(); } static void debug() { printf("%llu %llu %llu %llu\n", mod, inv, r2, omega().get()); } word_t x; }; const int size = 1 << 24; #ifdef NTT64 using m64_1 = ntt::Mod<709143768229478401, 31>; using m64_2 = ntt::Mod<711416664922521601, 19>; // <= 712e15 (sub.D = 3) m64_1 f1[size], g1[size]; m64_2 f2[size], g2[size]; #else using m32_1 = ntt::Mod<138412033, 5>; using m32_2 = ntt::Mod<155189249, 6>; using m32_3 = ntt::Mod<163577857, 23>; // <= 16579e4 (sub.D = 3) m32_1 f1[size], g1[size]; m32_2 f2[size], g2[size]; m32_3 f3[size], g3[size]; #endif template <typename mod_t> void convolve(mod_t* A, int s1, mod_t* B, int s2, bool cyclic=false) { int s = (cyclic ? max(s1, s2) : s1 + s2 - 1); int size = 1; while (size < s) size <<= 1; mod_t roots[mod_t::level] = { mod_t::omega() }; rep(i, 1, mod_t::level) roots[i] = roots[i - 1] * roots[i - 1]; fill(A + s1, A + size, 0); ntt_dit4(A, size, 1, roots); if (A == B && s1 == s2) { rep(i, size) A[i] *= A[i]; } else { fill(B + s2, B + size, 0); ntt_dit4(B, size, 1, roots); rep(i, size) A[i] *= B[i]; } ntt_dit4(A, size, -1, roots); mod_t inv = mod_t(size).inverse(); rep(i, cyclic ? size : s) A[i] *= inv; } template <typename mod_t> void rev_permute(mod_t* A, int n) { int r = 0, nh = n >> 1; rep(i, 1, n) { for (int h = nh; !((r ^= h) & h); h >>= 1); if (r > i) swap(A[i], A[r]); } } template <typename mod_t> void ntt_dit4(mod_t* A, int n, int sign, mod_t* roots) { rev_permute(A, n); int logn = __builtin_ctz(n); assert(logn <= mod_t::level); if (logn & 1) rep(i, 0, n, 2) { mod_t a = A[i], b = A[i + 1]; A[i] = a + b; A[i + 1] = a - b; } mod_t imag = roots[mod_t::level - 2]; if (sign < 0) imag = imag.inverse(); mod_t one = mod_t(1); rep(e, 2 + (logn & 1), logn + 1, 2) { const int m = 1 << e; const int m4 = m >> 2; mod_t dw = roots[mod_t::level - e]; if (sign < 0) dw = dw.inverse(); const int block_size = min(n, max(m, (1 << 15) / int(sizeof(A[0])))); rep(k, 0, n, block_size) { mod_t w = one, w2 = one, w3 = one; rep(j, m4) { rep(i, k + j, k + block_size, m) { mod_t a0 = A[i + m4 * 0] * one, a2 = A[i + m4 * 1] * w2; mod_t a1 = A[i + m4 * 2] * w, a3 = A[i + m4 * 3] * w3; mod_t t02 = a0 + a2, t13 = a1 + a3; A[i + m4 * 0] = t02 + t13; A[i + m4 * 2] = t02 - t13; t02 = a0 - a2, t13 = (a1 - a3) * imag; A[i + m4 * 1] = t02 + t13; A[i + m4 * 3] = t02 - t13; } w *= dw; w2 = w * w; w3 = w2 * w; } } } } } // namespace ntt using R = int; using R64 = i64; class poly { public: #ifdef NTT64 static const int ntt_threshold = 900; // deg(f * g) static const int quotient_threshold = 1800; // deg(f) static const int divrem_threshold = 700; // deg(f) static const int divrem_pre_threshold = 1600; // deg(f) #else static const int ntt_threshold = 1500; // deg(f * g) static const int quotient_threshold = 1500; // deg(f) static const int divrem_threshold = 800; // deg(f) static const int divrem_pre_threshold = 1600; // deg(f) #endif static R add_mod(R a, R b) { return int(a += b - mod) < 0 ? a + mod : a; } static R sub_mod(R a, R b) { return int(a -= b) < 0 ? a + mod : a; } static R64 sub_mul_mod(R64 a, R b, R c) { i64 t = i64(a) - i64(int(b)) * int(c); return t < 0 ? t + lmod : t; } static R mul_mod(R a, R b) { return R64(a) * b % fast_mod; } static R mod_inv(R a) { R b = mod, s = 1, t = 0; while (b > 0) { swap(s -= t * (a / b), t); swap(a %= b, b); } if (a > 1) { fprintf(stderr, "Error: invalid modular inverse\n"); exit(1); }; return int(s) < 0 ? s + mod : s; } inline static void vec_add(R64* res, int s, const R* f, R c) { rep(i, s) res[i] = sub_mul_mod(res[i], mod - c, f[i]); } inline static void vec_sub(R64* res, int s, const R* f, R c) { rep(i, s) res[i] = sub_mul_mod(res[i], c, f[i]); } #ifdef NTT64 struct fast_div { using u128 = __uint128_t; fast_div() {} fast_div(u64 n) : m(n) { s = (n == 1) ? 0 : 127 - __builtin_clzll(n - 1); x = ((u128(1) << s) + n - 1) / n; } friend u64 operator / (u64 n, fast_div d) { return u128(n) * d.x >> d.s; } friend u64 operator % (u64 n, fast_div d) { return n - n / d * d.m; } u64 m, s, x; }; #else struct fast_div { fast_div() {} fast_div(u32 n) : m(n) {} friend u32 operator % (u64 n, fast_div d) { return n % d.m; } u32 m; }; #endif public: poly() {} poly(int n) : coefs(n) {} poly(int n, int c) : coefs(n, c % mod) {} poly(const R* ar, int s) : coefs(ar, ar + s) {} poly(const vector<R>& v) : coefs(v) {} poly(const poly& f, int beg, int end=-1) { if (end < 0) end = beg, beg = 0; resize(end - beg); rep(i, beg, end) if (i < f.size()) coefs[i - beg] = f[i]; } static int ilog2(u64 n) { return 63 - __builtin_clzll(n); } int size() const { return coefs.size(); } void resize(int s) { coefs.resize(s); } void push_back(R c) { coefs.push_back(c); } const R* data() const { return coefs.data(); } R* data() { return coefs.data(); } const R& operator [] (int i) const { return coefs[i]; } R& operator [] (int i) { return coefs[i]; } void reverse() { std::reverse(coefs.begin(), coefs.end()); } poly operator - () { poly ret = *this; rep(i, ret.size()) ret[i] = (ret[i] == 0 ? 0 : mod - ret[i]); return ret; } poly& operator += (const poly& rhs) { if (size() < rhs.size()) resize(rhs.size()); rep(i, rhs.size()) coefs[i] = add_mod(coefs[i], rhs[i]); return *this; } poly& operator -= (const poly& rhs) { if (size() < rhs.size()) resize(rhs.size()); rep(i, rhs.size()) coefs[i] = sub_mod(coefs[i], rhs[i]); return *this; } poly& operator *= (const poly& rhs) { return *this = *this * rhs; } poly& rev_add(const poly& rhs) { if (size() < rhs.size()) { int s = size(); resize(rhs.size()); rep(i, s) coefs[size() - 1 - i] = coefs[s - 1 - i]; rep(i, size() - s) coefs[i] = 0; } rep(i, rhs.size()) coefs[size() - 1 - i] = \ add_mod(coefs[size() - 1 - i], rhs.coefs[rhs.size() - 1 - i]); return *this; } poly operator + (const poly& rhs) const { return poly(*this) += rhs; } poly operator - (const poly& rhs) const { return poly(*this) -= rhs; } poly operator * (const poly& rhs) const { return this->mul(rhs); } static void set_mod(R m, int N=2) { mod = m; lmod = R64(m) << 32; N = max(2, N); fast_mod = fast_div(mod); invs.assign(N + 1, 1); facts.assign(N + 1, 1); ifacts.assign(N + 1, 1); invs[1] = 1; rep(i, 2, N + 1) { invs[i] = mul_mod(invs[mod % i], mod - mod / i); facts[i] = mul_mod(facts[i - 1], i); ifacts[i] = mul_mod(ifacts[i - 1], invs[i]); } } private: #ifdef NTT64 static poly mul_crt(int beg, int end) { using namespace ntt; auto inv = m64_2(m64_1::modulus()).inverse(); auto mod1 = m64_1::modulus() % fast_mod; poly ret(end - beg); rep(i, ret.size()) { u64 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(); ret[i] = (r1 + (m64_2(r2 + m64_2::modulus() - r1) * inv).get() % fast_mod * mod1) % fast_mod; } return ret; } static void mul2(const poly& f, const poly& g, bool cyclic=false) { using namespace ntt; if (&f == &g) { rep(i, f.size()) f1[i] = f[i]; convolve(f1, f.size(), f1, f.size(), cyclic); rep(i, f.size()) f2[i] = f[i]; convolve(f2, f.size(), f2, f.size(), cyclic); } else { rep(i, f.size()) f1[i] = f[i]; rep(i, g.size()) g1[i] = g[i]; convolve(f1, f.size(), g1, g.size(), cyclic); rep(i, f.size()) f2[i] = f[i]; rep(i, g.size()) g2[i] = g[i]; convolve(f2, f.size(), g2, g.size(), cyclic); } } #else static poly mul_crt(int beg, int end) { using namespace ntt; auto m1 = m32_1::modulus(); auto m2 = m32_2::modulus(); auto m3 = m32_3::modulus(); auto m12 = u64(m1) * m2; poly ret(end - beg); u32 m12m = m12 % mod; u32 inv1 = m32_2(m1).inverse().get(); u32 inv12 = m32_3(m12 % m3).inverse().get(); rep(i, ret.size()) { u32 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(), r3 = f3[i + beg].get(); u64 r = r1 + u64(r2 + m2 - r1) * inv1 % m2 * m1; ret[i] = (r + u64(r3 + m3 - r % m3) * inv12 % m3 * m12m) % mod; } return ret; } static void mul2(const poly& f, const poly& g, bool cyclic=false) { using namespace ntt; if (&f == &g) { rep(i, f.size()) f1[i] = f[i] % m32_1::modulus(); convolve(f1, f.size(), f1, f.size(), cyclic); rep(i, f.size()) f2[i] = f[i] % m32_2::modulus(); convolve(f2, f.size(), f2, f.size(), cyclic); rep(i, f.size()) f3[i] = f[i] % m32_3::modulus(); convolve(f3, f.size(), f3, f.size(), cyclic); } else { rep(i, f.size()) f1[i] = f[i] % m32_1::modulus(); rep(i, g.size()) g1[i] = g[i] % m32_1::modulus(); convolve(f1, f.size(), g1, g.size(), cyclic); rep(i, f.size()) f2[i] = f[i] % m32_2::modulus(); rep(i, g.size()) g2[i] = g[i] % m32_2::modulus(); convolve(f2, f.size(), g2, g.size(), cyclic); rep(i, f.size()) f3[i] = f[i] % m32_3::modulus(); rep(i, g.size()) g3[i] = g[i] % m32_3::modulus(); convolve(f3, f.size(), g3, g.size(), cyclic); } } #endif public: static void amul(const R* f, int s1, const R* g, int s2, R* res) { int s = s1 + s2 - 1; tmp64.assign(s, 0); rep(i, s2) if (g[i]) vec_add(tmp64.data() + i, s1, f, g[i]); rep(i, s) res[i] = tmp64[i] % fast_mod; } poly mul_basecase(const poly& g) const { const auto& f = *this; int s = size() + g.size() - 1; poly ret(s); amul(f.data(), f.size(), g.data(), g.size(), ret.data()); return ret; } // 1.0 * M(n) poly mul(const poly& g) const { const auto& f = *this; if (f.size() == 0 || g.size() == 0) return poly(); if (f.size() + g.size() <= ntt_threshold) { return f.mul_basecase(g); } else { mul2(f, g, false); return mul_crt(0, f.size() + g.size() - 1); } } // 1.0 * M(n) poly middle_product(const poly& g) const { const poly& f = *this; if (f.size() == 0 || g.size() == 0) return poly(); mul2(f, g, true); return mul_crt(f.size(), g.size()); } public: vector<R> coefs; static vector<R> tmp32; static vector<R64> tmp64; static vector<R> invs, facts, ifacts; static R mod; static R64 lmod; static fast_div fast_mod; }; R poly::mod; R64 poly::lmod; poly::fast_div poly::fast_mod; vector<R> poly::tmp32; vector<R64> poly::tmp64; vector<R> poly::invs, poly::facts, poly::ifacts; int fact_mod_p(i64 N, int mod) { if (N >= mod) return 0; if (N == mod - 1) return mod - 1; if (N == 0) return 1; const int sqrt_N = sqrt(N); poly::set_mod(mod, sqrt_N); auto shift = [&] (const poly& f, int dx) -> poly { int n = f.size(); int a = i64(dx) * poly::mod_inv(sqrt_N) % mod; const auto& ifacts = poly::ifacts; // auto p1 = poly(f); rep(i, n) { int d = i64(ifacts[i]) * ifacts[(n - 1) - i] % mod; if ((n - 1 - i) & 1) d = mod - d; p1[i] = i64(p1[i]) * d % mod; } // auto p2 = poly(2 * n); rep(i, p2.size()) p2[i] = (a + i - n) <= 0 ? 1 : a + i - n; rep(i, 1, p2.size()) p2[i] = i64(p2[i]) * p2[i - 1] % mod; int prod = p2[2 * n - 1], inv = poly::mod_inv(prod); for (int i = 2 * n - 1; i > 0; --i) { p2[i] = i64(inv) * p2[i - 1] % mod; inv = i64(inv) * (a + i - n) % mod; } p2[0] = inv; // p1 = p1.middle_product(p2); // prod = 1; rep(i, n) prod = i64(prod) * (a + n - 1 - i) % mod; for (int i = n - 1; i >= 0; --i) { p1[i] = i64(p1[i]) * prod % mod; prod = i64(prod) * p2[n + i] % mod * (a + i - n) % mod; } return p1; }; function< poly(int) > rec = [&] (int n) -> poly { if (n == 1) return poly(vector<int>({1, 1 + sqrt_N})); int nh = n >> 1; auto a1 = rec(nh); auto a2 = shift(a1, nh); auto b1 = shift(a1, sqrt_N * nh); auto b2 = shift(a1, sqrt_N * nh + nh); rep(i, nh + 1) a1[i] = i64(a1[i]) * a2[i] % mod; rep(i, 1, nh + 1) a1.push_back(i64(b1[i]) * b2[i] % mod); if (n & 1) { rep(i, n) a1[i] = i64(a1[i]) * (n + sqrt_N * i) % mod; int prod = 1; rep(i, n * sqrt_N, n * sqrt_N + n) prod = i64(prod) * (i + 1) % mod; a1.push_back(prod); } return a1; }; auto vs = rec(sqrt_N); int ret = 1; rep(i, sqrt_N) ret = i64(ret) * vs[i] % mod; rep(i, sqrt_N * sqrt_N + 1, N + 1) ret = i64(ret) * i % mod; return ret; } void solve() { const int mod = 1e9 + 7; i64 N; while (~scanf("%lld", &N)) { // O(sqrt(p) * log(p)) int ans = fact_mod_p(N, mod); printf("%d\n", ans); } } int main() { auto beg = clock(); solve(); auto end = clock(); fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC); }