結果

問題 No.720 行列のできるフィボナッチ数列道場 (2)
ユーザー hirakich1048576
提出日時 2017-04-15 15:36:57
言語 C
(gcc 13.3.0)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 3,054 bytes
コンパイル時間 1,770 ms
コンパイル使用メモリ 31,744 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-14 13:59:14
合計ジャッジ時間 1,559 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MOD 1000000007
typedef unsigned long long llu;
typedef signed long long lld;
llu n, m;
void powmtr(/* const */ llu* mtr[], llu n, int size, llu* resultVar[]){
int i, j;
llu prevmtr[2][size];
llu resultdata[2][size];
for (i = 0; i < 2; i++) {
for (j = 0; j < size; j++) {
resultdata[i][j] = (i == j ? 1 : 0);
prevmtr[i][j] = mtr[i][j];
}
}
while (n) {
if (n & 1) {
const llu rd00 = resultdata[0][0];
const llu rd01 = resultdata[0][1];
const llu rd10 = resultdata[1][0];
const llu rd11 = resultdata[1][1];
// puts("resultdata update!");
for (i = 0; i < size; i++) {
if (i != size - 1) {
resultdata[0][i] = resultdata[1][i] = 0;
}
resultdata[0][i] += (rd00 * prevmtr[0][i] + rd01 * prevmtr[1][i]) % MOD;
resultdata[0][i] %= MOD;
resultdata[1][i] += (rd10 * prevmtr[0][i] + rd11 * prevmtr[1][i]) % MOD;
resultdata[1][i] %= MOD;
// printf("%llu %llu\n", resultdata[0][i], resultdata[1][i]);
}
}
// putchar('\n');
n = (n >> 1);
// puts("prevmtr update!");
{
const llu pm00 = prevmtr[0][0];
const llu pm01 = prevmtr[0][1];
const llu pm10 = prevmtr[1][0];
const llu pm11 = prevmtr[1][1];
for (i = 0; i < size; i++) {
const llu pm0i = prevmtr[0][i];
const llu pm1i = prevmtr[1][i];
if (i != size - 1) {
prevmtr[0][i] = prevmtr[1][i] = 0;
}
prevmtr[0][i] += (pm00 * pm0i + pm01 * pm1i) % MOD;
prevmtr[0][i] %= MOD;
prevmtr[1][i] += (pm10 * pm0i + pm11 * pm1i) % MOD;
prevmtr[1][i] %= MOD;
// printf("%llu %llu\n", prevmtr[0][i], prevmtr[1][i]);
}
}
// putchar('\n');
// puts("=========================");
}
for (i = 0; i < 2; i++) {
for (j = 0; j < size; j++) {
resultVar[i][j] = resultdata[i][j];
}
}
}
llu solve(llu m){
int i;
llu leftMatrix[m + 1];
llu rightMatrixPeace[2][m + 1];
llu* argRightm[2] = {rightMatrixPeace[0], rightMatrixPeace[1]};
llu answer;
llu fibPrev = 0, fibNext = 1;
for (i = m - 1; i >= 0; i--) {
leftMatrix[i] = rightMatrixPeace[1][i] = fibNext;
fibPrev += fibNext;
fibPrev %= MOD;
fibPrev ^= fibNext;
fibNext ^= fibPrev;
fibPrev ^= fibNext;
}
for (i = 0; i < m; i++) {
rightMatrixPeace[0][i + 1] = rightMatrixPeace[1][i];
}
leftMatrix[m] = 0;
rightMatrixPeace[0][0] = (rightMatrixPeace[0][1] + rightMatrixPeace[1][1]) % MOD;
rightMatrixPeace[1][m] = 0;
powmtr(argRightm, n, m + 1, argRightm);
// for (i = 0; i < m + 1; i++) printf("%d %llu\n", i, leftMatrix[i]);
// for (i = 0; i < 2; i++) {
// for (int j = 0; j <= m; j++) {
// printf("%d:%d %llu\n", i, j, rightMatrixPeace[i][j]);
// }
// }
answer = (leftMatrix[0] * rightMatrixPeace[0][m] + leftMatrix[1] * rightMatrixPeace[1][m]) % MOD;
return answer;
}
int main(void){
llu answer;
scanf("%llu %llu", &n, &m);
printf("%llu\n", solve(m));
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0