結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | te-sh |
提出日時 | 2017-04-20 22:21:33 |
言語 | D (dmd 2.106.1) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,042 bytes |
コンパイル時間 | 529 ms |
コンパイル使用メモリ | 141,176 KB |
最終ジャッジ日時 | 2024-11-14 20:00:04 |
合計ジャッジ時間 | 1,034 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/internal/write.d(143): Error: cannot implicitly convert expression `obj` of type `const(FactorRing!1000000007)` to `int` /home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/write.d(1239): Error: template instance `std.format.internal.write.formatValueImpl!(LockingTextWriter, FactorRing!1000000007, char)` error instantiating /home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/write.d(632): instantiated from here: `formatValue!(LockingTextWriter, FactorRing!1000000007, char)` /home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/stdio.d(1759): instantiated from here: `formattedWrite!(LockingTextWriter, char, FactorRing!1000000007)` /home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/stdio.d(4277): instantiated from here: `write!(FactorRing!1000000007, string, FactorRing!1000000007, char)` Main.d(19): instantiated from here: `writeln!(FactorRing!1000000007, string, FactorRing!1000000007)`
ソースコード
import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.typecons; // Tuple, Nullable, BigFlags const p = 10 ^^ 9 + 7; alias FactorRing!p mint; void main() { auto rd = readln.split.to!(long[]), n = rd[0], k = rd[1]; auto ai = readln.split.to!(int[]).map!(to!mint).array; Tuple!(mint, mint) r; if (k <= 10 ^^ 6) r = calc1(n, k, ai); else r = calc2(n, k, ai); writeln(r[0], " ", r[1]); } auto calc1(long n, long k, mint[] ai) { auto fi = new mint[](k); auto si = new mint[](k); fi[0] = ai[0]; si[0] = ai[0]; foreach (i; 1..n) { fi[i] = ai[i]; si[i] = si[i - 1] + fi[i]; } fi[n] = si[n - 1]; si[n] = si[n - 1] + fi[n]; foreach (i; n+1..k) { fi[i] = fi[i - 1] * 2 - fi[i - n - 1]; si[i] = si[i - 1] + fi[i]; } return Tuple!(mint, mint)(fi[$-1], si[$-1]); } auto calc2(long n, long k, mint[] ai) { auto bi = ai.dup; bi.reverse(); auto si = new mint[](n); si[0] = ai[0]; foreach (i; 1..n) si[i] = si[i - 1] + ai[i]; si.reverse(); auto fm = new mint[][](n, n); fm[0][] = mint(1); foreach (i; 0..n-1) fm[i + 1][i] = mint(1); fm = pow(fm, k - n, n); auto f = zip(fm[0], bi).map!"a[0] * a[1]".fold!"a + b"; auto sm = new mint[][](n + 1, n + 1); sm[0][0] = mint(2); sm[0][$-1] = mint(-1); foreach (i; 0..n) sm[i + 1][i] = mint(1); sm = pow(sm, k - n, n + 1); auto s = zip(sm[0], si).map!"a[0] * a[1]".fold!"a + b"; return Tuple!(mint, mint)(f, s); } auto pow(T)(T[][] ai, long b, long n) { auto m = b.bsr + 1; auto tbl = new T[][][](m, n, n); foreach (i; 0..n) tbl[0][i][] = ai[i]; foreach (i; 1..m) tbl[i] = mul(tbl[i - 1], tbl[i - 1], n); auto r = new T[][](n, n); foreach (i; 0..n) r[i][i] = T(1); foreach (i; 0..m) if (b.bitTest(i)) r = mul(r, tbl[i], n); return r; } auto mul(T)(T[][] ai, T[][] bi, long n) { auto ci = new T[][](n, n); foreach (i; 0..n) foreach (j; 0..n) foreach (k; 0..n) ci[i][j] = ci[i][j] + ai[i][k] * bi[k][j]; return ci; } pragma(inline) { pure bool bitTest(T)(T n, size_t i) { return (n & (T(1) << i)) != 0; } import core.bitop; pure int bsr(T)(T n) { return core.bitop.bsr(ulong(n)); } } struct FactorRing(int m) { long v; @property int toInt() { return v.to!int; } alias toInt this; this(T)(T _v) { v = mod(_v); } ref FactorRing!m opAssign(int _v) { v = mod(_v); return this; } pure auto mod(long _v) const { return _v > 0 ? _v % m : ((_v % m) + m) % m; } pure auto opBinary(string op: "+")(FactorRing!m rhs) const { return FactorRing!m(v + rhs.v); } pure auto opBinary(string op: "-")(FactorRing!m rhs) const { return FactorRing!m(v - rhs.v); } pure auto opBinary(string op: "*")(FactorRing!m rhs) const { return FactorRing!m(v * rhs.v); } pure auto opBinary(string op: "^^")(FactorRing!m rhs) const { return pow(this, rhs.toInt); } pure auto opBinary(string op)(int rhs) const if (op == "+" || op == "-" || op == "*") { return opBinary!op(FactorRing!m(rhs)); } }