結果

問題 No.510 二次漸化式
ユーザー LayCurseLayCurse
提出日時 2017-04-28 23:09:59
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 1,641 ms / 3,000 ms
コード長 8,200 bytes
コンパイル時間 1,469 ms
コンパイル使用メモリ 162,728 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-13 18:31:27
合計ジャッジ時間 14,103 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 30 ms
6,940 KB
testcase_03 AC 30 ms
6,940 KB
testcase_04 AC 31 ms
6,944 KB
testcase_05 AC 31 ms
6,944 KB
testcase_06 AC 255 ms
6,944 KB
testcase_07 AC 255 ms
6,944 KB
testcase_08 AC 257 ms
6,940 KB
testcase_09 AC 258 ms
6,940 KB
testcase_10 AC 4 ms
6,944 KB
testcase_11 AC 4 ms
6,944 KB
testcase_12 AC 4 ms
6,940 KB
testcase_13 AC 4 ms
6,944 KB
testcase_14 AC 4 ms
6,944 KB
testcase_15 AC 4 ms
6,940 KB
testcase_16 AC 239 ms
6,940 KB
testcase_17 AC 237 ms
6,944 KB
testcase_18 AC 236 ms
6,944 KB
testcase_19 AC 237 ms
6,940 KB
testcase_20 AC 237 ms
6,944 KB
testcase_21 AC 237 ms
6,944 KB
testcase_22 AC 237 ms
6,940 KB
testcase_23 AC 863 ms
6,944 KB
testcase_24 AC 866 ms
6,944 KB
testcase_25 AC 858 ms
6,940 KB
testcase_26 AC 850 ms
6,940 KB
testcase_27 AC 844 ms
6,940 KB
testcase_28 AC 848 ms
6,940 KB
testcase_29 AC 857 ms
6,940 KB
testcase_30 AC 847 ms
6,940 KB
testcase_31 AC 4 ms
6,940 KB
testcase_32 AC 5 ms
6,944 KB
testcase_33 AC 5 ms
6,944 KB
testcase_34 AC 1,641 ms
6,940 KB
testcase_35 AC 3 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
struct mint{
  static unsigned R, RR, Rinv, W, md, mdninv;
  unsigned val;
  mint(){
  }
  mint(int a){
    val = mulR(a);
  }
  mint(unsigned a){
    val = mulR(a);
  }
  mint(long long a){
    val = mulR(a);
  }
  mint(unsigned long long a){
    val = mulR(a);
  }
  int get_inv(long long a, int md){
    long long e, s=md, t=a, u=1, v=0;
    while(s){
      e=t/s;
      t-=e*s;
      u-=e*v;
      swap(t,s);
      swap(u,v);
    }
    if(u<0){
      u+=md;
    }
    return u;
  }
  void setmod(unsigned m){
    int i;
    unsigned t;
    W = 32;
    md = m;
    R = (1ULL << W) % md;
    RR = (unsigned long long)R*R % md;
    switch(m){
      case 104857601:
      Rinv = 2560000;
      mdninv = 104857599;
      break;
      case 998244353:
      Rinv = 232013824;
      mdninv = 998244351;
      break;
      case 1000000007:
      Rinv = 518424770;
      mdninv = 2226617417U;
      break;
      case 1000000009:
      Rinv = 171601999;
      mdninv = 737024967;
      break;
      case 1004535809:
      Rinv = 234947584;
      mdninv = 1004535807;
      break;
      case 1007681537:
      Rinv = 236421376;
      mdninv = 1007681535;
      break;
      case 1012924417:
      Rinv = 238887936;
      mdninv = 1012924415;
      break;
      case 1045430273:
      Rinv = 254466304;
      mdninv = 1045430271;
      break;
      case 1051721729:
      Rinv = 257538304;
      mdninv = 1051721727;
      break;
      default:
      Rinv = get_inv(R, md);
      mdninv = 0;
      t = 0;
      for(i=0;i<(int)W;i++){
        if(t%2==0){
          t+=md;
          mdninv |= (1U<<i);
        }
        t /= 2;
      }
    }
  }
  unsigned mulR(unsigned a){
    return (unsigned long long)a*R%md;
  }
  unsigned mulR(int a){
    if(a < 0){
      a = a%md+md;
    }
    return mulR((unsigned)a);
  }
  unsigned mulR(unsigned long long a){
    return mulR((unsigned)(a%md));
  }
  unsigned mulR(long long a){
    a %= md;
    if(a < 0){
      a += md;
    }
    return mulR((unsigned)a);
  }
  unsigned reduce(unsigned T){
    unsigned m=T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned reduce(unsigned long long T){
    unsigned m=(unsigned)T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned get(){
    return reduce(val);
  }
  mint &operator+=(mint a){
    val += a.val;
    if(val >= md){
      val -= md;
    }
    return *this;
  }
  mint &operator-=(mint a){
    if(val < a.val){
      val = val + md - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  mint &operator*=(mint a){
    val = reduce((unsigned long long)val*a.val);
    return *this;
  }
  mint &operator/=(mint a){
    return *this *= a.inverse();
  }
  mint operator+(mint a){
    return mint(*this)+=a;
  }
  mint operator-(mint a){
    return mint(*this)-=a;
  }
  mint operator*(mint a){
    return mint(*this)*=a;
  }
  mint operator/(mint a){
    return mint(*this)/=a;
  }
  mint operator+(int a){
    return mint(*this)+=mint(a);
  }
  mint operator-(int a){
    return mint(*this)-=mint(a);
  }
  mint operator*(int a){
    return mint(*this)*=mint(a);
  }
  mint operator/(int a){
    return mint(*this)/=mint(a);
  }
  mint operator+(long long a){
    return mint(*this)+=mint(a);
  }
  mint operator-(long long a){
    return mint(*this)-=mint(a);
  }
  mint operator*(long long a){
    return mint(*this)*=mint(a);
  }
  mint operator/(long long a){
    return mint(*this)/=mint(a);
  }
  mint operator-(void){
    mint res;
    if(val){
      res.val=md-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  operator bool(void){
    return val!=0;
  }
  operator int(void){
    return get();
  }
  operator long long(void){
    return get();
  }

  mint inverse(){
    int a = val, b = md, u = 1, v = 0, t;
    mint res;
    while(b){
      t = a / b;
      a -= t * b; swap(a, b);
      u -= t * v; swap(u, v);
    }
    if(u < 0) u += md;
    res.val = (unsigned long long)u*RR % md;
    return res;
  }

  mint pw(unsigned long long b){
    mint a(*this), res;
    res.val = R;
    while(b){
      if(b&1) res *= a;
      b >>= 1;
      a *= a;
    }
    return res;
  }

  bool operator==(int a){return mulR(a)==val;}
  bool operator!=(int a){return mulR(a)!=val;}
};
unsigned mint::md, mint::W, mint::R, mint::Rinv, mint::mdninv, mint::RR;
mint operator+(int a, mint b){return mint(a)+=b;
}
mint operator-(int a, mint b){
  return mint(a)-=b;
}
mint operator*(int a, mint b){
  return mint(a)*=b;
}
mint operator/(int a, mint b){
  return mint(a)/=b;
}
mint operator+(long long a, mint b){
  return mint(a)+=b;
}
mint operator-(long long a, mint b){
  return mint(a)-=b;
}
mint operator*(long long a, mint b){
  return mint(a)*=b;
}
mint operator/(long long a, mint b){
  return mint(a)/=b;
}
void rd(int &x){
  int k, m=0;
  x=0;
  for(;;){
    k = getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
void rd(char c[]){
  int i, sz=0;
  for(;;){
    i = getchar_unlocked();
    if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
      break;
    }
  }
  c[sz++] = i;
  for(;;){
    i = getchar_unlocked();
    if(i==' '||i=='\n'||i=='\r'||i=='\t'||i==EOF){
      break;
    }
    c[sz++] = i;
  }
  c[sz]='\0';
}
void wt_L(int x){
  char f[10];
  int m=0, s=0;
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    putchar_unlocked('-');
  }
  while(s--){
    putchar_unlocked(f[s]+'0');
  }
}
void wt_L(mint x){
  int i;
  i = (int)x;
  wt_L(i);
}
char mode[20000][3];
int N, Q, Qi[20000], Qv[20000], cnv[100002], used[100002];
mint B[100001], X[100001], Y[100001];
int main(){
  int i, j, k, mx;
  mint res;
  {
    mint x;
    x.setmod(MD);
  }
  rd(N);
  rd(Q);
  for(i=0;i<Q;i++){
    rd(mode[i]);
    rd(Qi[i]);
    if(mode[i][0]!='a'){
      rd(Qv[i]);
    }
  }
  {
    int Lj4PdHRW;
    for(Lj4PdHRW= 0;Lj4PdHRW< (Q-1) + 1;Lj4PdHRW++){
      used[Qi[Lj4PdHRW]] = 1;
    }
  }
  {
    int KL2GvlyY;
    for(KL2GvlyY= 0;KL2GvlyY< (Q-1) + 1;KL2GvlyY++){
      used[Qi[KL2GvlyY]+1] = 1;
    }
  }
  k = 0;
  for(i=0;i<N+1;i++){
    if(used[i]){
      cnv[i] = k++;
    }
  }
  {
    int Q5VJL1cS;
    for(Q5VJL1cS= 0;Q5VJL1cS< (Q-1) + 1;Q5VJL1cS++){
      Qi[Q5VJL1cS] = cnv[Qi[Q5VJL1cS]];
    }
  }
  mx = 0;
  {
    int e98WHCEY;
    for(e98WHCEY= 0;e98WHCEY< (N) + 1;e98WHCEY++){
      mx += used[e98WHCEY];
    }
  }
  {
    int cTE1_r3A;
    for(cTE1_r3A= 0;cTE1_r3A< (mx) + 1;cTE1_r3A++){
      B[cTE1_r3A] = 1;
    }
  }
  for(i=0;i<Q;i++){
    if(mode[i][0]=='a'){
      res = 1;
      for(k=0;k<Qi[i];k++){
        res += X[k] * B[k] * B[k];
      }
      wt_L(res);
      putchar_unlocked('\n');
    }
    else if(mode[i][0]=='x'){
      X[Qi[i]] = Qv[i];
    }
    else{
      Y[Qi[i]] = Qv[i];
      for(k=Qi[i];k<mx;k++){
        B[k+1] = Y[k] * B[k] + 1;
        if(Y[k].val==0){
          break;
        }
      }
    }
  }
  return 0;
}
// cLay varsion 20170428-1 [beta]

// --- original code ---
// int N, Q;
// mint X[100001], Y[100001], B[100001];
// char mode[20000][3]; int Qi[20000], Qv[20000];
// int used[100002], cnv[100002];
// 
// {
//   int i, j, k, mx;
//   mint res;
// 
//   rd(N,Q);
//   rep(i,Q){
//     rd(mode[i], Qi[i]);
//     if(mode[i][0]!='a') rd(Qv[i]);
//   }
// 
//   used[Qi[0..Q-1]] = 1;
//   used[Qi[0..Q-1]+1] = 1;
//   k = 0;
//   rep(i,N+1) if(used[i]) cnv[i] = k++;
//   Qi[0..Q-1] = cnv[Qi[0..]];
// 
//   mx = 0;
//   mx += used[0..N];
//   B[0..mx] = 1;
//   
//   rep(i,Q){
//     if(mode[i][0]=='a'){
//       res = 1;
//       rep(k,Qi[i]) res += X[k] * B[k] * B[k];
//       wt(res);
//     } else if(mode[i][0]=='x'){
//       X[Qi[i]] = Qv[i];
//     } else {
//       Y[Qi[i]] = Qv[i];
//       rep(k,Qi[i],mx){
//         B[k+1] = Y[k] * B[k] + 1;
//         if(Y[k].val==0) break;
//       }
//     }
//   }
// }
0