結果

問題 No.510 二次漸化式
ユーザー LayCurse
提出日時 2017-04-28 23:13:59
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 172 ms / 3,000 ms
コード長 7,689 bytes
コンパイル時間 1,543 ms
コンパイル使用メモリ 167,136 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-13 18:32:57
合計ジャッジ時間 5,221 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
struct mint{
static unsigned R, RR, Rinv, W, md, mdninv;
unsigned val;
mint(){
}
mint(int a){
val = mulR(a);
}
mint(unsigned a){
val = mulR(a);
}
mint(long long a){
val = mulR(a);
}
mint(unsigned long long a){
val = mulR(a);
}
int get_inv(long long a, int md){
long long e, s=md, t=a, u=1, v=0;
while(s){
e=t/s;
t-=e*s;
u-=e*v;
swap(t,s);
swap(u,v);
}
if(u<0){
u+=md;
}
return u;
}
void setmod(unsigned m){
int i;
unsigned t;
W = 32;
md = m;
R = (1ULL << W) % md;
RR = (unsigned long long)R*R % md;
switch(m){
case 104857601:
Rinv = 2560000;
mdninv = 104857599;
break;
case 998244353:
Rinv = 232013824;
mdninv = 998244351;
break;
case 1000000007:
Rinv = 518424770;
mdninv = 2226617417U;
break;
case 1000000009:
Rinv = 171601999;
mdninv = 737024967;
break;
case 1004535809:
Rinv = 234947584;
mdninv = 1004535807;
break;
case 1007681537:
Rinv = 236421376;
mdninv = 1007681535;
break;
case 1012924417:
Rinv = 238887936;
mdninv = 1012924415;
break;
case 1045430273:
Rinv = 254466304;
mdninv = 1045430271;
break;
case 1051721729:
Rinv = 257538304;
mdninv = 1051721727;
break;
default:
Rinv = get_inv(R, md);
mdninv = 0;
t = 0;
for(i=0;i<(int)W;i++){
if(t%2==0){
t+=md;
mdninv |= (1U<<i);
}
t /= 2;
}
}
}
unsigned mulR(unsigned a){
return (unsigned long long)a*R%md;
}
unsigned mulR(int a){
if(a < 0){
a = a%md+md;
}
return mulR((unsigned)a);
}
unsigned mulR(unsigned long long a){
return mulR((unsigned)(a%md));
}
unsigned mulR(long long a){
a %= md;
if(a < 0){
a += md;
}
return mulR((unsigned)a);
}
unsigned reduce(unsigned T){
unsigned m=T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned reduce(unsigned long long T){
unsigned m=(unsigned)T * mdninv, t=(unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned get(){
return reduce(val);
}
mint &operator+=(mint a){
val += a.val;
if(val >= md){
val -= md;
}
return *this;
}
mint &operator-=(mint a){
if(val < a.val){
val = val + md - a.val;
}
else{
val -= a.val;
}
return *this;
}
mint &operator*=(mint a){
val = reduce((unsigned long long)val*a.val);
return *this;
}
mint &operator/=(mint a){
return *this *= a.inverse();
}
mint operator+(mint a){
return mint(*this)+=a;
}
mint operator-(mint a){
return mint(*this)-=a;
}
mint operator*(mint a){
return mint(*this)*=a;
}
mint operator/(mint a){
return mint(*this)/=a;
}
mint operator+(int a){
return mint(*this)+=mint(a);
}
mint operator-(int a){
return mint(*this)-=mint(a);
}
mint operator*(int a){
return mint(*this)*=mint(a);
}
mint operator/(int a){
return mint(*this)/=mint(a);
}
mint operator+(long long a){
return mint(*this)+=mint(a);
}
mint operator-(long long a){
return mint(*this)-=mint(a);
}
mint operator*(long long a){
return mint(*this)*=mint(a);
}
mint operator/(long long a){
return mint(*this)/=mint(a);
}
mint operator-(void){
mint res;
if(val){
res.val=md-val;
}
else{
res.val=0;
}
return res;
}
operator bool(void){
return val!=0;
}
operator int(void){
return get();
}
operator long long(void){
return get();
}
mint inverse(){
int a = val, b = md, u = 1, v = 0, t;
mint res;
while(b){
t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
if(u < 0) u += md;
res.val = (unsigned long long)u*RR % md;
return res;
}
mint pw(unsigned long long b){
mint a(*this), res;
res.val = R;
while(b){
if(b&1) res *= a;
b >>= 1;
a *= a;
}
return res;
}
bool operator==(int a){return mulR(a)==val;}
bool operator!=(int a){return mulR(a)!=val;}
};
unsigned mint::md, mint::W, mint::R, mint::Rinv, mint::mdninv, mint::RR;
mint operator+(int a, mint b){return mint(a)+=b;
}
mint operator-(int a, mint b){
return mint(a)-=b;
}
mint operator*(int a, mint b){
return mint(a)*=b;
}
mint operator/(int a, mint b){
return mint(a)/=b;
}
mint operator+(long long a, mint b){
return mint(a)+=b;
}
mint operator-(long long a, mint b){
return mint(a)-=b;
}
mint operator*(long long a, mint b){
return mint(a)*=b;
}
mint operator/(long long a, mint b){
return mint(a)/=b;
}
void rd(int &x){
int k, m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
void rd(char c[]){
int i, sz=0;
for(;;){
i = getchar_unlocked();
if(i!=' '&&i!='\n'&&i!='\r'&&i!='\t'&&i!=EOF){
break;
}
}
c[sz++] = i;
for(;;){
i = getchar_unlocked();
if(i==' '||i=='\n'||i=='\r'||i=='\t'||i==EOF){
break;
}
c[sz++] = i;
}
c[sz]='\0';
}
void wt_L(int x){
char f[10];
int m=0, s=0;
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
void wt_L(mint x){
int i;
i = (int)x;
wt_L(i);
}
char mode[20000][3];
int N, Q, Qi[20000], Qv[20000];
mint B[100001], X[100001], Y[100001];
int main(){
int i, j, k, mx;
mint res;
set<int> s;
set<int>::iterator it;
{
mint x;
x.setmod(MD);
}
rd(N);
rd(Q);
for(i=0;i<Q;i++){
rd(mode[i]);
rd(Qi[i]);
if(mode[i][0]!='a'){
rd(Qv[i]);
}
}
{
int Lj4PdHRW;
for(Lj4PdHRW= 0;Lj4PdHRW< (N) + 1;Lj4PdHRW++){
B[Lj4PdHRW] = 1;
}
}
for(i=0;i<Q;i++){
if(mode[i][0]=='a'){
res = 1;
for(it=s.begin();it!=s.end();it++){
if(*it >= Qi[i]){
break;
}
res += X[*it] * B[*it] * B[*it];
}
wt_L(res);
putchar_unlocked('\n');
}
else if(mode[i][0]=='x'){
X[Qi[i]] = Qv[i];
s.insert(Qi[i]);
}
else{
Y[Qi[i]] = Qv[i];
for(k=Qi[i];k<N;k++){
B[k+1] = Y[k] * B[k] + 1;
if(Y[k].val==0){
break;
}
}
}
}
return 0;
}
// cLay varsion 20170428-1 [beta]
// --- original code ---
// int N, Q;
// mint X[100001], Y[100001], B[100001];
// char mode[20000][3]; int Qi[20000], Qv[20000];
//
// {
// int i, j, k, mx;
// mint res;
// set<int> s;
// set<int>::iterator it;
//
// rd(N,Q);
// rep(i,Q){
// rd(mode[i], Qi[i]);
// if(mode[i][0]!='a') rd(Qv[i]);
// }
//
// B[0..N] = 1;
//
// rep(i,Q){
// if(mode[i][0]=='a'){
// res = 1;
// for(it=s.begin();it!=s.end();it++){
// if(*it >= Qi[i]) break;
// res += X[*it] * B[*it] * B[*it];
// }
// wt(res);
// } else if(mode[i][0]=='x'){
// X[Qi[i]] = Qv[i];
// s.insert(Qi[i]);
// } else {
// Y[Qi[i]] = Qv[i];
// rep(k,Qi[i],N){
// B[k+1] = Y[k] * B[k] + 1;
// if(Y[k].val==0) break;
// }
// }
// }
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0