結果
問題 |
No.181 A↑↑N mod M
|
ユーザー |
|
提出日時 | 2017-05-02 13:47:16 |
言語 | D (dmd 2.109.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,151 bytes |
コンパイル時間 | 781 ms |
コンパイル使用メモリ | 105,412 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-12 19:00:20 |
合計ジャッジ時間 | 2,185 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 6 |
other | AC * 16 WA * 21 |
コンパイルメッセージ
Main.d(54): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead. Main.d(57): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead. Main.d(57): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead. Main.d(57): Deprecation: function `std.math.exponential.log` is deprecated - `std.math.exponential.log` called with argument types `(long)` matches both `log(real)`, `log(double)`, and `log(float)`. Cast argument to floating point type instead. /home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/numeric.d(2999): Warning: cannot inline function `std.numeric.gcdImpl!ulong.gcdImpl`
ソースコード
import std.algorithm, std.conv, std.range, std.stdio, std.string; import std.math; // math functions import std.numeric; // gcd void main() { auto rd = readln.split.to!(long[]); writeln(calc(rd[0], rd[1], rd[2])); } auto calc(long a, long n, long m) { if (n == 0) return 1L; if (m == 1) return 0L; auto g = gcd(a, m); if (g == 1) return modPow1(a, calc(a, n - 1, phi(m)), m); auto gp = modPow2(g, a, n - 1, m); if (gp == 0) return 0; return (gp * modPow1(a/g, calc(a, n - 1, phi(m)), m)) % m; } auto phi(long n) { auto r = 0L; foreach (i; 1..n) if (gcd(i, n) == 1) ++r; return r; } auto modPow1(long a, long n, long m) { if (n == 0) return 1L; if (m == 1) return 0L; auto r = 1L, s = a; while (n > 0) { if (n & 1) r = (r * s) % m; s = (s * s) % m; n >>= 1; } return r; } auto modPow2(long g, long a, long n, long m) { if (n == 0) { return g; } else if (n == 1) { if (a * log(g) > m) return 0L; return g ^^ a % m; } else if (n == 2) { if (a * log(a) * log(log(g)) > log(log(m))) return 0L; return g ^^ (a ^^ a) % m; } else { return 0L; } }