結果
問題 | No.541 3 x N グリッド上のサイクルの個数 |
ユーザー | はむこ |
提出日時 | 2017-05-30 02:40:09 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,256 bytes |
コンパイル時間 | 1,895 ms |
コンパイル使用メモリ | 182,192 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-22 12:40:41 |
合計ジャッジ時間 | 3,753 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | AC | 1 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 1 ms
6,940 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | WA | - |
testcase_52 | WA | - |
testcase_53 | WA | - |
testcase_54 | WA | - |
testcase_55 | WA | - |
testcase_56 | WA | - |
testcase_57 | WA | - |
testcase_58 | WA | - |
testcase_59 | WA | - |
testcase_60 | WA | - |
testcase_61 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <sys/time.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back #define all(x) (x).begin(), (x).end() #define fi first #define se second #define mt make_tuple #define mp make_pair template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } #define exists find_if #define forall all_of using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using Pos = complex<double>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; } template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;} string bits_to_string(ll input, ll n=64) { string s; rep(i, n) s += '0' + !!(input & (1ll << i)); reverse(all(s)); return s; } template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;}; string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); } struct ci : public iterator<forward_iterator_tag, ll> { ll n; ci(const ll n) : n(n) { } bool operator==(const ci& x) { return n == x.n; } bool operator!=(const ci& x) { return !(*this == x); } ci &operator++() { n++; return *this; } ll operator*() const { return n; } }; size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various class namespace myhash{ const int Bsizes[]={3,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81}; const int xor_nums[]={0x100007d1,0x5ff049c9,0x14560859,0x07087fef,0x3e277d49,0x4dba1f17,0x709c5988,0x05904258,0x1aa71872,0x238819b3,0x7b002bb7,0x1cf91302,0x0012290a,0x1083576b,0x76473e49,0x3d86295b,0x20536814,0x08634f4d,0x115405e8,0x0e6359f2}; const int hash_key=xor_nums[rand()%20]; const int mod_key=xor_nums[rand()%20]; template <typename T> struct myhash{ std::size_t operator()(const T& val) const { return (hash<T>{}(val)%mod_key)^hash_key; } }; }; template <typename T> class uset:public std::unordered_set<T,myhash::myhash<T>> { using SET=std::unordered_set<T,myhash::myhash<T>>; public: uset():SET(){SET::rehash(myhash::Bsizes[rand()%20]);} }; template <typename T,typename U> class umap:public std::unordered_map<T,U,myhash::myhash<T>> { public: using MAP=std::unordered_map<T,U,myhash::myhash<T>>; umap():MAP(){MAP::rehash(myhash::Bsizes[rand()%20]);} }; struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) * 1e-6; } struct init_{init_(){ gettimeofday(&start, NULL); ios::sync_with_stdio(false); cin.tie(0); srand((unsigned int)time(NULL)); random_seed = RAND_MAX / 2 + rand() / 2; }} init__; static const long long mo = 1e9+9; class Mod { public: ll num; Mod() : Mod(0) {} Mod(long long int n) : num(n) { } Mod(const string &s){ long long int tmp = 0; for(auto &c:s) tmp = (c-'0'+tmp*10) % mo; num = tmp; } Mod(int n) : Mod(static_cast<long long int>(n)) {} operator int() { return num; } }; istream &operator>>(istream &is, Mod &x) { long long int n; is >> n; x = n; return is; } ostream &operator<<(ostream &o, const Mod &x) { o << x.num; return o; } Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mo); } Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; } Mod operator+(const Mod a, const long long int b) { return b + a; } Mod operator++(Mod &a) { return a + Mod(1); } Mod operator-(const Mod a, const Mod b) { return Mod((mo + a.num - b.num) % mo); } Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; } Mod operator--(Mod &a) { return a - Mod(1); } Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mo); } Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; } Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; } Mod operator*(const Mod a, const int b) { return Mod(b)*a; } Mod operator+=(Mod &a, const Mod b) { return a = a + b; } Mod operator+=(long long int &a, const Mod b) { return a = a + b; } Mod operator-=(Mod &a, const Mod b) { return a = a - b; } Mod operator-=(long long int &a, const Mod b) { return a = a - b; } Mod operator*=(Mod &a, const Mod b) { return a = a * b; } Mod operator*=(long long int &a, const Mod b) { return a = a * b; } Mod operator*=(Mod& a, const long long int &b) { return a = a * b; } Mod factorial(const long long n) { if (n < 0) return 0; Mod ret = 1; for (int i = 1; i <= n; i++) { ret *= i; } return ret; } Mod operator^(const Mod a, const long long n) { if (n == 0) return Mod(1); Mod res = (a * a) ^ (n / 2); if (n % 2) res = res * a; return res; } Mod modpowsum(const Mod a, const long long b) { if (b == 0) return 0; if (b % 2 == 1) return modpowsum(a, b - 1) * a + Mod(1); Mod result = modpowsum(a, b / 2); return result * (a ^ (b / 2)) + result; } /*************************************/ // 以下、modは素数でなくてはならない! /*************************************/ Mod inv(const Mod a) { return a ^ (mo - 2); } /*************************************/ // GF(p)の行列演算 /*************************************/ using number = Mod; using arr = vector<number>; using matrix = vector<vector<Mod>>; ostream &operator<<(ostream &o, const arr &v) { rep(i, v.size()) cout << v[i] << " "; return o; } ostream &operator<<(ostream &o, const matrix &v) { rep(i, v.size()) cout << v[i]; return o; } matrix zero(int n) { return matrix(n, arr(n, 0)); } // O(n^2) matrix identity(int n) { matrix A(n, arr(n, 0)); rep(i, n) A[i][i] = 1; return A; } // O(n^2) // O(n^2) arr mul(const matrix &A, const arr &x) { arr y(A.size(), 0); rep(i, A.size()) rep(j, A[0].size()) y[i] += A[i][j] * x[j]; return y; } // O(n^3) matrix mul(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) rep(k, A[i].size()) C[i][j] += A[i][k] * B[k][j]; return C; } // O(n^2) matrix plu(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) C[i][j] += A[i][j] + B[i][j]; return C; } // O(n^2) matrix sub(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) C[i][j] += A[i][j] - B[i][j]; return C; } // O(n^2) arr plu(const arr &A, const arr &B) { arr C(A.size()); rep(i, A.size()) C[i] += A[i] + B[i]; return C; } // O(n) arr sub(const arr &A, const arr &B) { arr C(A.size()); rep(i, A.size()) C[i] += A[i] - B[i]; return C; } // 構築なし累乗 // // O(n^3 log e) matrix pow(const matrix &A, long long e) { return e == 0 ? identity(A.size()) : e % 2 == 0 ? pow(mul(A, A), e/2) : mul(A, pow(A, e-1)); } // input : a, b // output : x, y s.t. ax + by = (符号付き)gcd(a, b) int extGcd( int a, int b, int& x, int& y ) { if ( b == 0 ) { x = 1; y = 0; return a; } int g = extGcd( b, a % b, y, x ); y -= (a / b) * x; return g; } // xn = 1 (mod p) int invMod(int n, int p) { int x, y, g = extGcd ( n, p, x, y ); if (g == 1) return x; else if (g == -1) return -x; else return 0; // gcd(n, p) != 1,解なし } // 有限体上の線型方程式系 Ax = b (mod q)を解く // a = [A | b]: m × n の係数行列 // x: 解を記録するベクトル // 計算量: O(min(m, n) * m * n) bool gauss(matrix a, arr& x, int m, int n, int q) { int rank = 0; vll pivot(n); // 前進消去 for (int i = 0, j = 0; i < m && j < n-1; ++j) { int p = -1; ll tmp = 0; // ピボットを探す for (int k = i; p < 0 && k < m; ++k) { if (a[k][j] != 0) p = k; // 有限体上なので非零で十分 } // ランク落ち対策 if (p == -1) continue; // 第i行と第p行を入れ替える for (int k = j; k < n; ++k) tmp = a[i][k], a[i][k] = a[p][k], a[p][k] = tmp; // 第i行を使って掃き出す for (int k = i+1; k < m; ++k) { tmp = -(ll)a[k][j] * invMod(a[i][j], q) % q; for (int l = j; l < n; ++l) a[k][l] += tmp * a[i][l]; } // 第i行を正規化: a[i][j] = 1 にする tmp = invMod(a[i][j], q); for (int k = j; k < n; ++k) a[i][k] = a[i][k] * tmp % q; pivot[i++] = j, rank++; } // 解の存在のチェック for (int i = rank; i < m; ++i) if (a[i][n-1] != 0) return false; // 解をxに代入(後退代入) for (int i = 0; i < rank; ++i) x[i] = a[i][n-1]; for (int i = rank-1; i >= 0; --i) { for (int j = pivot[i] + 1; j < n-1; ++j) x[i] -= a[i][j] * x[j]; x[i] -= (ll)x[i] / q * q, x[i] = ((ll)x[i] + q) % q; // 0 <= x[i] < q に調整 } rep(i, x.size()) x[i] = (x[i] + mo) % mo; return true; } arr solve(matrix a, arr b) { int m = a.size(); arr ret(a.size()); rep(i, a.size()) { a[i].pb(b[i]); } gauss(a, ret, m, m+1, mo); return ret; } int main(void) { ll n; cin >> n; matrix A = { {1,1,1,1,1,1,1,0}, {1,1,1,1,1,0,0,0}, {1,1,1,0,0,0,0,1}, {1,1,0,1,1,0,0,0}, {1,1,0,1,1,1,0,0}, {1,0,0,0,1,1,0,1}, {0,0,1,0,0,1,1,0}, {1,0,0,0,0,0,0,1}, }; arr x = {1,1,1,1,1,1,1,0}; ll m = 8; auto an = pow(A, n); auto y = x; // s = (n-1)s arr s = solve(sub(identity(m), A), mul(sub(identity(m), an), x)); // (I-A)t = s - x - (n-1)A^n x arr annm1x = mul(an, x); rep(i, m) annm1x[i] = annm1x[i] * ((n-1) % mo); annm1x = sub(s, annm1x); annm1x = sub(annm1x, x); arr t = solve(sub(identity(m), A), annm1x); arr r(m); rep(i, m) r[i] = (n % mo * s[i] % mo - t[i]) % mo; Mod ret = 0; rep(i, m) if (i != 6) { ret = (ret + r[i]) % mo; } cout << ret % mo << endl; return 0; }