結果
問題 | No.519 アイドルユニット |
ユーザー | rpy3cpp |
提出日時 | 2017-05-30 23:27:53 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 42 ms / 1,000 ms |
コード長 | 18,343 bytes |
コンパイル時間 | 92 ms |
コンパイル使用メモリ | 14,208 KB |
実行使用メモリ | 12,288 KB |
最終ジャッジ日時 | 2024-10-03 03:57:46 |
合計ジャッジ時間 | 2,193 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 37 ms
12,032 KB |
testcase_01 | AC | 42 ms
12,032 KB |
testcase_02 | AC | 41 ms
12,032 KB |
testcase_03 | AC | 35 ms
12,160 KB |
testcase_04 | AC | 32 ms
12,288 KB |
testcase_05 | AC | 33 ms
12,032 KB |
testcase_06 | AC | 34 ms
12,032 KB |
testcase_07 | AC | 34 ms
12,160 KB |
testcase_08 | AC | 36 ms
12,032 KB |
testcase_09 | AC | 34 ms
12,032 KB |
testcase_10 | AC | 35 ms
12,032 KB |
testcase_11 | AC | 34 ms
12,160 KB |
testcase_12 | AC | 33 ms
12,288 KB |
testcase_13 | AC | 35 ms
12,032 KB |
testcase_14 | AC | 34 ms
12,032 KB |
testcase_15 | AC | 34 ms
12,032 KB |
testcase_16 | AC | 36 ms
12,288 KB |
testcase_17 | AC | 36 ms
12,160 KB |
testcase_18 | AC | 37 ms
12,160 KB |
testcase_19 | AC | 36 ms
12,032 KB |
testcase_20 | AC | 36 ms
12,160 KB |
testcase_21 | AC | 37 ms
12,032 KB |
testcase_22 | AC | 36 ms
12,288 KB |
testcase_23 | AC | 36 ms
12,032 KB |
testcase_24 | AC | 37 ms
12,032 KB |
testcase_25 | AC | 36 ms
12,160 KB |
testcase_26 | AC | 36 ms
12,160 KB |
testcase_27 | AC | 36 ms
12,032 KB |
testcase_28 | AC | 35 ms
12,032 KB |
testcase_29 | AC | 35 ms
12,160 KB |
testcase_30 | AC | 34 ms
12,160 KB |
testcase_31 | AC | 38 ms
12,160 KB |
testcase_32 | AC | 40 ms
12,032 KB |
testcase_33 | AC | 32 ms
12,160 KB |
ソースコード
# 計算量O(n^3) 最大重みマッチング # NetworkX の max_wieght_matching() のソースをもとに改変。 # 元のソースコードに対し、以下の変更を加えた。 # ・入力するグラフ G は、NetworkXの Graph オブジェクトでなく、下記で定義した簡易版のGraphオブジェクト # ・返り値は、マッチングのペアを表す辞書 mate でなく、マッチングした辺の合計の最大値 max_weight に変更。 # ・maxcardinality = True にデフォルトを変更。 # ・コメントの削除 # ・検算用の関数 および assert文を削除。 # # 以下のコピーライト表記は、元のソースコードのもの。 # Copyright (C) 2004-2015 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. # Copyright (C) 2011 by # Nicholas Mancuso <nick.mancuso@gmail.com> # All rights reserved. # BSD license. from itertools import repeat class Graph(object): '''重み付き無向グラフを表すクラス。 max_weight_matching() の入力に使うためのラッパーで、networkXのグラフクラスを模倣する。 G.nodes() : ノードのリストを返す。 G.edges_iter(data=True): (i, j, data)のタプルを順にyieldする。i, j は辺の両端の頂点。dataは、辺に関連付けられたデータ(辞書)。 data.get("weight") で辺の重みを取得できる。 -> 回りくどいので、dataを辞書ではなく、重みを表すintとした。 G[i][j]: 辺(i, j)に関連付けられたデータを返す。->回りくどいので、dataを返すのでなく、重みを表すintを返すとした。 G.neighbors_iter(v): 頂点 v に隣接する頂点を順にyieldする。 ''' def __init__(self, Es): ''' Es: Es[v] に、頂点vの辺の一覧の辞書(隣接頂点をキー、辺の重みを値)を格納したリスト 頂点は、0 から、len(Es)-1 までの整数連番で表す。 ''' self.Vs = list(range(len(Es))) self.Es = Es self._init_edges() def nodes(self): return self.Vs[:] def neighbors_iter(self, v): return self.Es[v].keys() def edges_iter(self, data=True): if data: return iter(self.edges_with_weight) else: return iter(self.edges) def __getitem__(self, v): return self.Es[v] def _init_edges(self): edges = set() for v in self.Vs: for u, w in self.Es[v].items(): edges.add((min(v, u), max(v, u), w)) self.edges_with_weight = list(edges) self.edges = [(u, v) for u, v, w in self.edges_with_weight] def max_weight_matching(G, maxcardinality=True): """Compute a maximum-weighted matching of G. A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. The weight of a matching is the sum of the weights of its edges. Parameters ---------- G : NetworkX graph Undirected graph maxcardinality: bool, optional If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings. Returns ------- mate : dictionary -> max_weight : int を返す仕様に変更。 The matching is returned as a dictionary, mate, such that mate[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate. Notes ----- If G has edges with 'weight' attribute the edge data are used as weight values else the weights are assumed to be 1. This function takes time O(number_of_nodes ** 3). If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors. This method is based on the "blossom" method for finding augmenting paths and the "primal-dual" method for finding a matching of maximum weight, both methods invented by Jack Edmonds [1]_. Bipartite graphs can also be matched using the functions present in :mod:`networkx.algorithms.bipartite.matching`. References ---------- .. [1] "Efficient Algorithms for Finding Maximum Matching in Graphs", Zvi Galil, ACM Computing Surveys, 1986. """ # # The algorithm is taken from "Efficient Algorithms for Finding Maximum # Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986. # It is based on the "blossom" method for finding augmenting paths and # the "primal-dual" method for finding a matching of maximum weight, both # methods invented by Jack Edmonds. # # A C program for maximum weight matching by Ed Rothberg was used # extensively to validate this new code. # # Many terms used in the code comments are explained in the paper # by Galil. You will probably need the paper to make sense of this code. # class NoNode: pass class Blossom: __slots__ = [ 'childs', 'edges', 'mybestedges' ] def leaves(self): for t in self.childs: if isinstance(t, Blossom): for v in t.leaves(): yield v else: yield t gnodes = G.nodes() maxweight = 0 allinteger = True for i,j,wt in G.edges_iter(data=True): if i != j and wt > maxweight: maxweight = wt mate = { } label = { } labeledge = { } inblossom = dict(zip(gnodes, gnodes)) blossomparent = dict(zip(gnodes, repeat(None))) blossombase = dict(zip(gnodes, gnodes)) bestedge = { } dualvar = dict(zip(gnodes, repeat(maxweight))) blossomdual = { } allowedge = { } queue = [ ] def slack(v, w): return dualvar[v] + dualvar[w] - 2 * G[v][w] def assignLabel(w, t, v): b = inblossom[w] label[w] = label[b] = t if v is not None: labeledge[w] = labeledge[b] = (v, w) else: labeledge[w] = labeledge[b] = None bestedge[w] = bestedge[b] = None if t == 1: if isinstance(b, Blossom): queue.extend(b.leaves()) else: queue.append(b) elif t == 2: base = blossombase[b] assignLabel(mate[base], 1, base) def scanBlossom(v, w): path = [ ] base = NoNode while v is not NoNode: b = inblossom[v] if label[b] & 4: base = blossombase[b] break path.append(b) label[b] = 5 if labeledge[b] is None: v = NoNode else: v = labeledge[b][0] b = inblossom[v] v = labeledge[b][0] if w is not NoNode: v, w = w, v for b in path: label[b] = 1 return base def addBlossom(base, v, w): bb = inblossom[base] bv = inblossom[v] bw = inblossom[w] b = Blossom() blossombase[b] = base blossomparent[b] = None blossomparent[bb] = b b.childs = path = [ ] b.edges = edgs = [ (v, w) ] while bv != bb: blossomparent[bv] = b path.append(bv) edgs.append(labeledge[bv]) v = labeledge[bv][0] bv = inblossom[v] path.append(bb) path.reverse() edgs.reverse() while bw != bb: blossomparent[bw] = b path.append(bw) edgs.append((labeledge[bw][1], labeledge[bw][0])) w = labeledge[bw][0] bw = inblossom[w] label[b] = 1 labeledge[b] = labeledge[bb] blossomdual[b] = 0 for v in b.leaves(): if label[inblossom[v]] == 2: queue.append(v) inblossom[v] = b bestedgeto = { } for bv in path: if isinstance(bv, Blossom): if bv.mybestedges is not None: nblist = bv.mybestedges bv.mybestedges = None else: nblist = [ (v, w) for v in bv.leaves() for w in G.neighbors_iter(v) if v != w ] else: nblist = [ (bv, w) for w in G.neighbors_iter(bv) if bv != w ] for k in nblist: (i, j) = k if inblossom[j] == b: i, j = j, i bj = inblossom[j] if (bj != b and label.get(bj) == 1 and ((bj not in bestedgeto) or slack(i, j) < slack(*bestedgeto[bj]))): bestedgeto[bj] = k bestedge[bv] = None b.mybestedges = list(bestedgeto.values()) mybestedge = None bestedge[b] = None for k in b.mybestedges: kslack = slack(*k) if mybestedge is None or kslack < mybestslack: mybestedge = k mybestslack = kslack bestedge[b] = mybestedge def expandBlossom(b, endstage): for s in b.childs: blossomparent[s] = None if isinstance(s, Blossom): if endstage and blossomdual[s] == 0: expandBlossom(s, endstage) else: for v in s.leaves(): inblossom[v] = s else: inblossom[s] = s if (not endstage) and label.get(b) == 2: entrychild = inblossom[labeledge[b][1]] j = b.childs.index(entrychild) if j & 1: j -= len(b.childs) jstep = 1 else: jstep = -1 v, w = labeledge[b] while j != 0: if jstep == 1: p, q = b.edges[j] else: q, p = b.edges[j-1] label[w] = None label[q] = None assignLabel(w, 2, v) allowedge[(p, q)] = allowedge[(q, p)] = True j += jstep if jstep == 1: v, w = b.edges[j] else: w, v = b.edges[j-1] allowedge[(v, w)] = allowedge[(w, v)] = True j += jstep bw = b.childs[j] label[w] = label[bw] = 2 labeledge[w] = labeledge[bw] = (v, w) bestedge[bw] = None j += jstep while b.childs[j] != entrychild: bv = b.childs[j] if label.get(bv) == 1: j += jstep continue if isinstance(bv, Blossom): for v in bv.leaves(): if label.get(v): break else: v = bv if label.get(v): label[v] = None label[mate[blossombase[bv]]] = None assignLabel(v, 2, labeledge[v][0]) j += jstep label.pop(b, None) labeledge.pop(b, None) bestedge.pop(b, None) del blossomparent[b] del blossombase[b] del blossomdual[b] def augmentBlossom(b, v): t = v while blossomparent[t] != b: t = blossomparent[t] if isinstance(t, Blossom): augmentBlossom(t, v) i = j = b.childs.index(t) if i & 1: j -= len(b.childs) jstep = 1 else: jstep = -1 while j != 0: j += jstep t = b.childs[j] if jstep == 1: w, x = b.edges[j] else: x, w = b.edges[j-1] if isinstance(t, Blossom): augmentBlossom(t, w) j += jstep t = b.childs[j] if isinstance(t, Blossom): augmentBlossom(t, x) mate[w] = x mate[x] = w b.childs = b.childs[i:] + b.childs[:i] b.edges = b.edges[i:] + b.edges[:i] blossombase[b] = blossombase[b.childs[0]] assert blossombase[b] == v def augmentMatching(v, w): for (s, j) in ((v, w), (w, v)): while 1: bs = inblossom[s] if isinstance(bs, Blossom): augmentBlossom(bs, s) mate[s] = j if labeledge[bs] is None: break t = labeledge[bs][0] bt = inblossom[t] s, j = labeledge[bt] if isinstance(bt, Blossom): augmentBlossom(bt, j) mate[j] = s while 1: label.clear() labeledge.clear() bestedge.clear() for b in blossomdual: b.mybestedges = None allowedge.clear() queue[:] = [ ] for v in gnodes: if (v not in mate) and label.get(inblossom[v]) is None: assignLabel(v, 1, None) augmented = 0 while 1: while queue and not augmented: v = queue.pop() assert label[inblossom[v]] == 1 for w in G.neighbors_iter(v): if w == v: continue # ignore self-loops bv = inblossom[v] bw = inblossom[w] if bv == bw: continue if (v, w) not in allowedge: kslack = slack(v, w) if kslack <= 0: allowedge[(v, w)] = allowedge[(w, v)] = True if (v, w) in allowedge: if label.get(bw) is None: assignLabel(w, 2, v) elif label.get(bw) == 1: base = scanBlossom(v, w) if base is not NoNode: addBlossom(base, v, w) else: augmentMatching(v, w) augmented = 1 break elif label.get(w) is None: label[w] = 2 labeledge[w] = (v, w) elif label.get(bw) == 1: if bestedge.get(bv) is None or kslack < slack(*bestedge[bv]): bestedge[bv] = (v, w) elif label.get(w) is None: if bestedge.get(w) is None or kslack < slack(*bestedge[w]): bestedge[w] = (v, w) if augmented: break deltatype = -1 delta = deltaedge = deltablossom = None if not maxcardinality: deltatype = 1 delta = min(dualvar.values()) for v in gnodes: if label.get(inblossom[v]) is None and bestedge.get(v) is not None: d = slack(*bestedge[v]) if deltatype == -1 or d < delta: delta = d deltatype = 2 deltaedge = bestedge[v] for b in blossomparent: if ( blossomparent[b] is None and label.get(b) == 1 and bestedge.get(b) is not None ): kslack = slack(*bestedge[b]) if allinteger: d = kslack // 2 else: d = kslack / 2.0 if deltatype == -1 or d < delta: delta = d deltatype = 3 deltaedge = bestedge[b] for b in blossomdual: if ( blossomparent[b] is None and label.get(b) == 2 and (deltatype == -1 or blossomdual[b] < delta) ): delta = blossomdual[b] deltatype = 4 deltablossom = b if deltatype == -1: deltatype = 1 delta = max(0, min(dualvar.values())) for v in gnodes: if label.get(inblossom[v]) == 1: dualvar[v] -= delta elif label.get(inblossom[v]) == 2: dualvar[v] += delta for b in blossomdual: if blossomparent[b] is None: if label.get(b) == 1: blossomdual[b] += delta elif label.get(b) == 2: blossomdual[b] -= delta if deltatype == 1: break elif deltatype == 2: (v, w) = deltaedge allowedge[(v, w)] = allowedge[(w, v)] = True queue.append(v) elif deltatype == 3: (v, w) = deltaedge allowedge[(v, w)] = allowedge[(w, v)] = True queue.append(v) elif deltatype == 4: expandBlossom(deltablossom, False) if not augmented: break for b in list(blossomdual.keys()): if b not in blossomdual: continue # already expanded if ( blossomparent[b] is None and label.get(b) == 1 and blossomdual[b] == 0 ): expandBlossom(b, True) max_weight = sum(G[u][v] for u, v in mate.items())//2 return max_weight def read_data(): n = int(input()) F = [list(map(int, input().split())) for _ in range(n)] return n, F def solve(n, F): Es = [dict() for _ in range(n)] for u, f in enumerate(F): for v, w in enumerate(f): if v == u:continue Es[u][v] = w G = Graph(Es) return max_weight_matching(G) n, F = read_data() print(solve(n, F))