結果
問題 | No.541 3 x N グリッド上のサイクルの個数 |
ユーザー | はむこ |
提出日時 | 2017-06-02 23:46:31 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 21,955 bytes |
コンパイル時間 | 2,664 ms |
コンパイル使用メモリ | 196,460 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-22 12:41:12 |
合計ジャッジ時間 | 4,347 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 4 ms
6,940 KB |
testcase_02 | AC | 3 ms
6,944 KB |
testcase_03 | AC | 3 ms
6,944 KB |
testcase_04 | AC | 3 ms
6,944 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 3 ms
6,940 KB |
testcase_10 | AC | 3 ms
6,944 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 3 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,944 KB |
testcase_14 | AC | 3 ms
6,940 KB |
testcase_15 | AC | 3 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,940 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 3 ms
6,940 KB |
testcase_19 | AC | 3 ms
6,940 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 3 ms
6,940 KB |
testcase_24 | AC | 3 ms
6,940 KB |
testcase_25 | AC | 3 ms
6,944 KB |
testcase_26 | AC | 4 ms
6,944 KB |
testcase_27 | AC | 3 ms
6,940 KB |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | AC | 3 ms
6,944 KB |
testcase_30 | AC | 3 ms
6,944 KB |
testcase_31 | AC | 3 ms
6,944 KB |
testcase_32 | AC | 3 ms
6,940 KB |
testcase_33 | AC | 3 ms
6,940 KB |
testcase_34 | AC | 3 ms
6,944 KB |
testcase_35 | AC | 3 ms
6,944 KB |
testcase_36 | AC | 3 ms
6,940 KB |
testcase_37 | AC | 3 ms
6,944 KB |
testcase_38 | AC | 3 ms
6,944 KB |
testcase_39 | AC | 3 ms
6,940 KB |
testcase_40 | AC | 4 ms
6,944 KB |
testcase_41 | AC | 3 ms
6,940 KB |
testcase_42 | AC | 3 ms
6,944 KB |
testcase_43 | AC | 3 ms
6,940 KB |
testcase_44 | AC | 3 ms
6,944 KB |
testcase_45 | AC | 3 ms
6,944 KB |
testcase_46 | AC | 3 ms
6,940 KB |
testcase_47 | AC | 3 ms
6,940 KB |
testcase_48 | AC | 3 ms
6,940 KB |
testcase_49 | AC | 3 ms
6,944 KB |
testcase_50 | AC | 3 ms
6,940 KB |
testcase_51 | AC | 3 ms
6,940 KB |
testcase_52 | AC | 3 ms
6,940 KB |
testcase_53 | AC | 3 ms
6,940 KB |
testcase_54 | AC | 3 ms
6,940 KB |
testcase_55 | AC | 3 ms
6,944 KB |
testcase_56 | AC | 3 ms
6,944 KB |
testcase_57 | AC | 3 ms
6,940 KB |
testcase_58 | AC | 3 ms
6,940 KB |
testcase_59 | AC | 3 ms
6,944 KB |
testcase_60 | AC | 3 ms
6,940 KB |
testcase_61 | AC | 3 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #include <sys/time.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back #define all(x) (x).begin(), (x).end() #define fi first #define se second #define mt make_tuple #define mp make_pair template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } #define exists find_if #define forall all_of using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using Pos = complex<double>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; } template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;} string bits_to_string(ll input, ll n=64) { string s; rep(i, n) s += '0' + !!(input & (1ll << i)); reverse(all(s)); return s; } template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;}; string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); } struct ci : public iterator<forward_iterator_tag, ll> { ll n; ci(const ll n) : n(n) { } bool operator==(const ci& x) { return n == x.n; } bool operator!=(const ci& x) { return !(*this == x); } ci &operator++() { n++; return *this; } ll operator*() const { return n; } }; size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various class namespace myhash{ const int Bsizes[]={3,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81}; const int xor_nums[]={0x100007d1,0x5ff049c9,0x14560859,0x07087fef,0x3e277d49,0x4dba1f17,0x709c5988,0x05904258,0x1aa71872,0x238819b3,0x7b002bb7,0x1cf91302,0x0012290a,0x1083576b,0x76473e49,0x3d86295b,0x20536814,0x08634f4d,0x115405e8,0x0e6359f2}; const int hash_key=xor_nums[rand()%20]; const int mod_key=xor_nums[rand()%20]; template <typename T> struct myhash{ std::size_t operator()(const T& val) const { return (hash<T>{}(val)%mod_key)^hash_key; } }; }; template <typename T> class uset:public std::unordered_set<T,myhash::myhash<T>> { using SET=std::unordered_set<T,myhash::myhash<T>>; public: uset():SET(){SET::rehash(myhash::Bsizes[rand()%20]);} }; template <typename T,typename U> class umap:public std::unordered_map<T,U,myhash::myhash<T>> { public: using MAP=std::unordered_map<T,U,myhash::myhash<T>>; umap():MAP(){MAP::rehash(myhash::Bsizes[rand()%20]);} }; struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) * 1e-6; } struct init_{init_(){ gettimeofday(&start, NULL); ios::sync_with_stdio(false); cin.tie(0); srand((unsigned int)time(NULL)); random_seed = RAND_MAX / 2 + rand() / 2; }} init__; static const double EPS = 1e-14; static const long long INF = 1e18; #define ldout fixed << setprecision(40) static const long long mo = 1e9+7; class Mod { public: long long num; Mod() : Mod(0) {} Mod(long long int n) : num(n) { } Mod(const string &s){ long long int tmp = 0; for(auto &c:s) tmp = (c-'0'+tmp*10) % mo; num = tmp; } Mod(int n) : Mod(static_cast<long long int>(n)) {} operator int() { return num; } }; istream &operator>>(istream &is, Mod &x) { long long int n; is >> n; x = n; return is; } ostream &operator<<(ostream &o, const Mod &x) { o << x.num; return o; } Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mo); } Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; } Mod operator+(const Mod a, const long long int b) { return b + a; } Mod operator++(Mod &a) { return a + Mod(1); } Mod operator-(const Mod a, const Mod b) { return Mod((mo + a.num - b.num) % mo); } Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; } Mod operator--(Mod &a) { return a - Mod(1); } Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mo); } Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; } Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; } Mod operator*(const Mod a, const int b) { return Mod(b)*a; } Mod operator+=(Mod &a, const Mod b) { return a = a + b; } Mod operator+=(long long int &a, const Mod b) { return a = a + b; } Mod operator-=(Mod &a, const Mod b) { return a = a - b; } Mod operator-=(long long int &a, const Mod b) { return a = a - b; } Mod operator*=(Mod &a, const Mod b) { return a = a * b; } Mod operator*=(long long int &a, const Mod b) { return a = a * b; } Mod operator*=(Mod& a, const long long int &b) { return a = a * b; } Mod factorial(const long long n) { if (n < 0) return 0; Mod ret = 1; for (int i = 1; i <= n; i++) { ret *= i; } return ret; } Mod operator^(const Mod a, const long long n) { if (n == 0) return Mod(1); Mod res = (a * a) ^ (n / 2); if (n % 2) res = res * a; return res; } Mod modpowsum(const Mod a, const long long b) { if (b == 0) return 0; if (b % 2 == 1) return modpowsum(a, b - 1) * a + Mod(1); Mod result = modpowsum(a, b / 2); return result * (a ^ (b / 2)) + result; } /*************************************/ // 以下、modは素数でなくてはならない! /*************************************/ Mod inv(const Mod a) { return a ^ (mo - 2); } Mod operator/(const Mod a, const Mod b) { assert(b.num != 0); return a * inv(b); } Mod operator/(const long long int a, const Mod b) { assert(b.num != 0); return Mod(a) * inv(b); } Mod operator/=(Mod &a, const Mod b) { assert(b.num != 0); return a = a * inv(b); } // n!と1/n!のテーブルを作る。 // nCrを高速に計算するためのもの。 // // assertでnを超えていないかをきちんとテストすること。 // // O(n log mo) vector<Mod> fact, rfact; void constructFactorial(const long long n) { fact.resize(n); rfact.resize(n); fact[0] = rfact[0] = 1; for (int i = 1; i < n; i++) { fact[i] = fact[i-1] * i; rfact[i] = Mod(1) / fact[i]; } } // O(1) Mod nCr(const long long n, const long long r) { // assert(n < (long long)fact.size()); if (n < 0 || r < 0) return 0; return fact[n] * rfact[r] * rfact[n-r]; } // O(k log mo) Mod nCrWithoutConstruction(const long long n, const long long k) { if (n < 0) return 0; if (k < 0) return 0; Mod ret = 1; for (int i = 0; i < k; i++) { ret *= n - (Mod)i; ret /= Mod(i+1); } return ret; } // n*mの盤面を左下から右上に行く場合の数 // O(1) Mod nBm(const long long n, const long long m) { if (n < 0 || m < 0) return 0; return nCr(n + m, n); } /*************************************/ // GF(p)の行列演算 /*************************************/ using number = Mod; using arr = vector<number>; using matrix = vector<vector<Mod>>; ostream &operator<<(ostream &o, const arr &v) { rep(i, v.size()) cout << v[i] << " "; return o; } ostream &operator<<(ostream &o, const matrix &v) { rep(i, v.size()) cout << v[i]; return o; } matrix zero(int n) { return matrix(n, arr(n, 0)); } // O(n^2) matrix identity(int n) { matrix A(n, arr(n, 0)); rep(i, n) A[i][i] = 1; return A; } // O(n^2) // O(n^2) arr mul(const matrix &A, const arr &x) { arr y(A.size(), 0); rep(i, A.size()) rep(j, A[0].size()) y[i] += A[i][j] * x[j]; return y; } // O(n^3) matrix mul(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) rep(k, A[i].size()) C[i][j] += A[i][k] * B[k][j]; return C; } // O(n^2) matrix plu(const matrix &A, const matrix &B) { matrix C(A.size(), arr(B[0].size(), 0)); rep(i, C.size()) rep(j, C[i].size()) C[i][j] += A[i][j] + B[i][j]; return C; } // O(n^2) arr plu(const arr &A, const arr &B) { arr C(A.size()); rep(i, A.size()) C[i] += A[i] + B[i]; return C; } // 構築なし累乗 // // O(n^3 log e) matrix pow(const matrix &A, long long e) { return e == 0 ? identity(A.size()) : e % 2 == 0 ? pow(mul(A, A), e/2) : mul(A, pow(A, e-1)); } // 構築付き累乗 // // powA: A^2^i // O(n^3 log e) matrix pow(const vector<matrix>& powA, long long e) { // powA[0]がA // cout << powA[0] << "^" << e <<endl; if (e <= 0) return identity(powA[0].size()); matrix ret = identity(powA[0].size()); rep(i, powA.size()) if (e & (1ll << i)) { ret = mul(ret, powA[i]); } return ret; } arr powmul(const vector<matrix>& powA, long long e, arr& a) { // powA[0]がA // cout << powA[0] << "^" << e <<endl; if (e <= 0) return a; arr ret = a; rep(i, powA.size()) if (e & (1ll << i)) { ret = mul(powA[i], ret); } return ret; } // Aを最大e乗まで計算するためのpowAを構築する。 // powAは副作用で返す // // O(n^3 log e) void construct_powA(const matrix &A, long long e, vector<matrix>& powA) { powA.clear(); powA.pb(A); for (int i = 1; (1ll << i) < e; i++) { powA.pb(mul(powA[i-1], powA[i-1])); } } // O(n) number inner_product(const arr &a, const arr &b) { number ans = 0; for (int i = 0; i < (int)a.size(); ++i) ans += a[i] * b[i]; return ans; } // O(n) number tr(const matrix &A) { number ans = 0; for (int i = 0; i < (int)A.size(); ++i) ans += A[i][i]; return ans; } // O( n^3 ) // modは素数でなければならない!! number det(matrix A) { int n = A.size(); assert(n == (int)A[0].size()); number ans = 1; for (int i = 0; i < n; i++) { int pivot = -1; for (int j = i; j < n; j++) if (A[j][i]) { pivot = j; break; } if (pivot == -1) return 0; if (i != pivot) { swap(A[i], A[pivot]); ans *= -1; } number tmpinv = inv(A[i][i]); for (int j = i + 1; j < n; j++) { number c = A[j][i] * tmpinv; for (int k = i; k < n; k++) { A[j][k] = (A[j][k] - c * A[i][k]); } } ans *= A[i][i]; } return ans; } // O( n^3 ). // int rank(matrix A) はまだ // O( n^3 ). // modが2の時だけ使える演算 #define FOR(x,to) for(x=0;x<(to);x++) // repに変えちゃダメ。xがint xになると動かない int gf2_rank(matrix A) { /* input */ if (!A.size() || (A.size() && A[0].size())) return 0; int n = A.size(); assert(mo == 2); int i,j,k; FOR(i,n) { int be=i,mi=n+1; for(j=i;j<n;j++) { FOR(k,n) if(A[j][k]) break; if(k<mi) be=j,mi=k; } if(mi>=n) break; FOR(j,n) swap(A[i][j],A[be][j]); FOR(j,n) if(i!=j&&A[j][mi]) { FOR(k,n) A[j][k] += A[i][k]; // ^=のつもり } } return i; } /*************************************/ // 謎演算 /*************************************/ // gcdは関数__gcdを使いましょう。long long対応している。 // a x + b y = gcd(a, b) long long extgcd(long long a, long long b, long long &x, long long &y) { long long g = a; x = 1; y = 0; if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x; return g; } // 線型連立合同式 a[i] x == b[i] (mod m[i]) (i = 0, ..., n-1) を解く. bool linearCongruences(const vector<long long> &a, const vector<long long> &b, const vector<long long> &m, long long &x, long long &M) { int n = a.size(); x = 0; M = 1; rep(i, n) { long long a_ = a[i] % M, b_ = b[i] - a[i] * x, m_ = m[i]; long long y, t, g = extgcd(a_, m_, y, t); if (b_ % g) return false; b_ /= g; m_ /= g; x += M * (y * b_ % m_); M *= m_; } x = (x + M) % M; return true; } // オイラーのφ関数 // LookUp Version const int N = 1000000; long long eulerPhi(long long n) { static int lookup = 0, p[N], f[N]; if (!lookup) { rep(i,N) p[i] = 1, f[i] = i; for (int i = 2; i < N; ++i) { if (p[i]) { f[i] -= f[i] / i; for (int j = i+i; j < N; j+=i) p[j] = 0, f[j] -= f[j] / i; } } lookup = 1; } return f[n]; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; typedef vector<mint> vmint; struct RandomModInt { default_random_engine re; uniform_int_distribution<int> dist; #ifndef _DEBUG RandomModInt() : re(random_device{}()), dist(1, mint::Mod - 1) { } #else RandomModInt() : re(), dist(1, mint::Mod - 1) { } #endif mint operator()() { mint r; r.x = dist(re); return r; } } randomModInt; void randomModIntVector(vector<mint> &v) { int n = (int)v.size(); for(int i = 0; i < n; ++ i) v[i] = randomModInt(); } ostream &operator<<(ostream &o, const mint v) { o << v.x; return o; } // GF(mo)列sから、それを生成する最小線形漸化式Cを復元する // // 入力: 漸化式が生成したGF(mo)列s // 出力: d項間漸化式の係数C (size = d+1) // 漸化式 // C_0 s_{n} + C_1 s_{n-1} + ... + C_{L} s{n-L} = 0 // がsを生成した時、Cを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1, 1000000005(-2)] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1, 1000000006(-1)] (s[1] - s[0] = 0) int berlekampMassey(const vector<mint> &s, vector<mint> &C) { int N = (int)s.size(); C.assign(N + 1, mint()); vector<mint> B(N + 1, mint()); C[0] = B[0] = 1; int degB = 0; vector<mint> T; int L = 0, m = 1; mint b = 1; for(int n = 0; n < N; ++ n) { mint d = s[n]; for(int i = 1; i <= L; ++ i) d += C[i] * s[n - i]; if(d == mint()) { ++ m; } else { if(2 * L <= n) T.assign(C.begin(), C.begin() + (L + 1)); mint coeff = -d * b.inverse(); for(int i = -1; i <= degB; ++ i) C[m + i] += coeff * B[i]; if(2 * L <= n) { L = n + 1 - L; B.swap(T); degB = (int)B.size() - 1; b = d; m = 1; } else { ++ m; } } } C.resize(L + 1); return L; } // GF(mo)列aから、それを生成する最小線形漸化式\phiを復元する // berlekampMasseyとの違いは、係数の順序が違うのと安全用のassertチェックがあること。 // // 入力: 漸化式が生成したGF(mo)列a // 出力: d項間漸化式の係数\phi (size = d+1) // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // がaを生成した時、\phiを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1000000005(-2), 1] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1000000006(-1), 1] (s[1] - s[0] = 0) void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) { assert(a.size() % 2 == 0); int L = berlekampMassey(a, phi); reverse(phi.begin(), phi.begin() + (L + 1)); } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、a[k]をinitValues(=a[0:phi.size()-1])の線形結合の係数を返す。 // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // // O(n^2 log k) void linearlyRecurrentSequenceCoeffs(long long k, const vector<mint> &phi_in, vector<mint> &coeffs) { int d = (int)phi_in.size() - 1; assert(d >= 0); assert(phi_in[d].get() == 1); coeffs = vector<mint>(d); vector<mint> square; coeffs[0] = 1; int l = 0; while ((k >> l) > 1) ++l; for (; l >= 0; --l) { square.assign(d * 2 - 1, mint()); rep(i, d) rep(j, d) square[i + j] += coeffs[i] * coeffs[j]; for (int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if (c.x == 0) continue; rep(j, d) square[i - d + j] -= c * phi_in[j]; } rep(i, d) coeffs[i] = square[i]; if (k >> l & 1) { mint lc = coeffs[d - 1]; for(int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * phi_in[i]; coeffs[0] = mint() - lc * phi_in[0]; } } } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、 // a_{k}を求める // // O(n^2 log k) // // また、副産物として、a[k]をinitVectorの線形結合として表す係数coeffが得られる // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // mint linearlyRecurrentSequenceValue(long long k, const vector<mint> &initValues, const vector<mint> &phi) { int d = phi.size() - 1; if(d == 0) return mint(); assert(d <= (int)initValues.size()); assert(k >= 0); if(k < (int)initValues.size()) return initValues[(int)k]; vector<mint> coeffs; linearlyRecurrentSequenceCoeffs(k, phi, coeffs); mint res; rep(i, d) res += coeffs[i] * initValues[i]; return res; } // 線形漸化的数列aのk番目は? // O(n^2 log k) mint reconstruct(long long k, vector<mint> a) { if (a.size() % 2) a.pop_back(); vector<mint> a_first_half; rep(i, a.size() / 2) a_first_half.pb(a[i]); vector<mint> phi; computeMinimumPolynomialForLinearlyRecurrentSequence(a, phi); return linearlyRecurrentSequenceValue(k, a_first_half, phi); } matrix A = { {1,1,1,1,1,1,1,0}, {1,1,1,1,1,0,0,0}, {1,1,1,0,0,0,0,1}, {1,1,0,1,1,0,0,0}, {1,1,0,1,1,1,0,0}, {1,0,0,0,1,1,0,1}, {0,0,1,0,0,1,1,0}, {1,0,0,0,0,0,0,1}, }; arr x_org = {1,1,1,1,1,1,1,0}; ll solve(ll n) { arr x = x_org; vll rets; rets.pb(6); rep(_, n-1) { x = mul(A, x); Mod ret = 0; rep(i, 8) if (i != 6) { ret += x[i]; } rets.pb(ret); } Mod ret = 0; rep(i, rets.size()) { ret += rets[i] * (n - i); } return ret; } int main(void) { ll n; cin >> n; vector<mint> a; repi(i, 0, 100) { a.pb(solve(i)); } cout << reconstruct(n, a) << endl; // めんどいのでBerlekamp-Masseyで復元 return 0; }