結果
問題 | No.541 3 x N グリッド上のサイクルの個数 |
ユーザー | はむこ |
提出日時 | 2017-06-02 23:55:38 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,677 bytes |
コンパイル時間 | 1,809 ms |
コンパイル使用メモリ | 169,540 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-22 12:41:16 |
合計ジャッジ時間 | 3,293 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 1 ms
6,940 KB |
testcase_32 | AC | 1 ms
6,944 KB |
testcase_33 | AC | 1 ms
6,940 KB |
testcase_34 | AC | 1 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 1 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 1 ms
6,940 KB |
testcase_39 | AC | 1 ms
6,944 KB |
testcase_40 | AC | 2 ms
6,940 KB |
testcase_41 | AC | 1 ms
6,940 KB |
testcase_42 | AC | 1 ms
6,940 KB |
testcase_43 | AC | 2 ms
6,944 KB |
testcase_44 | AC | 2 ms
6,940 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 2 ms
6,940 KB |
testcase_47 | AC | 2 ms
6,940 KB |
testcase_48 | AC | 1 ms
6,944 KB |
testcase_49 | AC | 2 ms
6,944 KB |
testcase_50 | AC | 1 ms
6,940 KB |
testcase_51 | AC | 1 ms
6,940 KB |
testcase_52 | AC | 2 ms
6,944 KB |
testcase_53 | AC | 1 ms
6,940 KB |
testcase_54 | AC | 2 ms
6,940 KB |
testcase_55 | AC | 2 ms
6,944 KB |
testcase_56 | AC | 2 ms
6,944 KB |
testcase_57 | AC | 1 ms
6,944 KB |
testcase_58 | AC | 2 ms
6,940 KB |
testcase_59 | AC | 2 ms
6,940 KB |
testcase_60 | AC | 1 ms
6,940 KB |
testcase_61 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #include <sys/time.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; typedef ModInt<1000000007> mint; typedef vector<mint> vmint; ostream &operator<<(ostream &o, const mint v) { o << v.x; return o; } // GF(mo)列sから、それを生成する最小線形漸化式Cを復元する // // 入力: 漸化式が生成したGF(mo)列s // 出力: d項間漸化式の係数C (size = d+1) // 漸化式 // C_0 s_{n} + C_1 s_{n-1} + ... + C_{L} s{n-L} = 0 // がsを生成した時、Cを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1, 1000000005(-2)] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1, 1000000006(-1)] (s[1] - s[0] = 0) int berlekampMassey(const vector<mint> &s, vector<mint> &C) { int N = (int)s.size(); C.assign(N + 1, mint()); vector<mint> B(N + 1, mint()); C[0] = B[0] = 1; int degB = 0; vector<mint> T; int L = 0, m = 1; mint b = 1; for(int n = 0; n < N; ++ n) { mint d = s[n]; for(int i = 1; i <= L; ++ i) d += C[i] * s[n - i]; if(d == mint()) { ++ m; } else { if(2 * L <= n) T.assign(C.begin(), C.begin() + (L + 1)); mint coeff = -d * b.inverse(); for(int i = -1; i <= degB; ++ i) C[m + i] += coeff * B[i]; if(2 * L <= n) { L = n + 1 - L; B.swap(T); degB = (int)B.size() - 1; b = d; m = 1; } else { ++ m; } } } C.resize(L + 1); return L; } // GF(mo)列aから、それを生成する最小線形漸化式\phiを復元する // berlekampMasseyとの違いは、係数の順序が違うのと安全用のassertチェックがあること。 // // 入力: 漸化式が生成したGF(mo)列a // 出力: d項間漸化式の係数\phi (size = d+1) // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // がaを生成した時、\phiを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1000000005(-2), 1] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1000000006(-1), 1] (s[1] - s[0] = 0) void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) { assert(a.size() % 2 == 0); int L = berlekampMassey(a, phi); reverse(phi.begin(), phi.begin() + (L + 1)); } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、a[k]をinitValues(=a[0:phi.size()-1])の線形結合の係数を返す。 // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // // O(n^2 log k) void linearlyRecurrentSequenceCoeffs(long long k, const vector<mint> &phi_in, vector<mint> &coeffs) { int d = (int)phi_in.size() - 1; assert(d >= 0); assert(phi_in[d].get() == 1); coeffs = vector<mint>(d); vector<mint> square; coeffs[0] = 1; int l = 0; while ((k >> l) > 1) ++l; for (; l >= 0; --l) { square.assign(d * 2 - 1, mint()); rep(i, d) rep(j, d) square[i + j] += coeffs[i] * coeffs[j]; for (int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if (c.x == 0) continue; rep(j, d) square[i - d + j] -= c * phi_in[j]; } rep(i, d) coeffs[i] = square[i]; if (k >> l & 1) { mint lc = coeffs[d - 1]; for(int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * phi_in[i]; coeffs[0] = mint() - lc * phi_in[0]; } } } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、 // a_{k}を求める // // O(n^2 log k) // // また、副産物として、a[k]をinitVectorの線形結合として表す係数coeffが得られる // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // mint linearlyRecurrentSequenceValue(long long k, const vector<mint> &initValues, const vector<mint> &phi) { int d = phi.size() - 1; if(d == 0) return mint(); assert(d <= (int)initValues.size()); assert(k >= 0); if(k < (int)initValues.size()) return initValues[(int)k]; vector<mint> coeffs; linearlyRecurrentSequenceCoeffs(k, phi, coeffs); mint res; rep(i, d) res += coeffs[i] * initValues[i]; return res; } // 線形漸化的数列aのk番目は? // O(n^2 log k) mint reconstruct(long long k, vector<mint> a) { if (a.size() % 2) a.pop_back(); vector<mint> a_first_half; rep(i, a.size() / 2) a_first_half.pb(a[i]); vector<mint> phi; computeMinimumPolynomialForLinearlyRecurrentSequence(a, phi); return linearlyRecurrentSequenceValue(k, a_first_half, phi); } vector<mint> a = {0, 6, 40, 213, 1049, 5034, 23984, 114069, 542295, 2577870, 12253948, 58249011, 276885683, 316170983}; int main(void) { ll n; cin >> n; cout << reconstruct(n, a) << endl; // めんどいのでBerlekamp-Masseyで復元 return 0; }