結果
問題 | No.578 3 x N グリッド上のサイクルのサイズ(easy) |
ユーザー |
![]() |
提出日時 | 2017-06-07 11:05:57 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 29 ms / 2,000 ms |
コード長 | 14,057 bytes |
コンパイル時間 | 2,502 ms |
コンパイル使用メモリ | 188,644 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-22 12:42:18 |
合計ジャッジ時間 | 4,314 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 50 |
ソースコード
#include <bits/stdc++.h>#include <sys/time.h>using namespace std;#define rep(i,n) for(long long i = 0; i < (long long)(n); i++)#define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++)#define pb push_back#define all(x) (x).begin(), (x).end()#define fi first#define se second#define mt make_tuple#define mp make_pairtemplate<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }#define exists find_if#define forall all_ofusing ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>;using ld = long double; using vld = vector<ld>;using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; }using Pos = complex<double>;template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; }template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{};template<class Ch, class Tr, class Tuple, size_t... Is>void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)),0)...}; }template<class Ch, class Tr, class... Args>auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; }ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; }template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o<< "]"; return o; }template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; }template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o<< *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; }template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin();it != m.end(); it++) o << *it; o << "]"; return o; }vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; }template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;}string bits_to_string(ll input, ll n=64) { string s; rep(i, n) s += '0' + !!(input & (1ll << i)); reverse(all(s)); return s; }template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;};string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); }struct ci : public iterator<forward_iterator_tag, ll> { ll n; ci(const ll n) : n(n) { } bool operator==(const ci& x) { return n == x.n; } booloperator!=(const ci& x) { return !(*this == x); } ci &operator++() { n++; return *this; } ll operator*() const { return n; } };size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const{ size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various classnamespace myhash{ const int Bsizes[]={3,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81}; const int xor_nums[]={0x100007d1,0x5ff049c9,0x14560859,0x07087fef,0x3e277d49,0x4dba1f17,0x709c5988,0x05904258,0x1aa71872,0x238819b3,0x7b002bb7,0x1cf91302,0x0012290a,0x1083576b,0x76473e49,0x3d86295b,0x20536814,0x08634f4d,0x115405e8,0x0e6359f2}; const int hash_key=xor_nums[rand()%20]; const int mod_key=xor_nums[rand()%20]; template<typename T> struct myhash{ std::size_t operator()(const T& val) const { return (hash<T>{}(val)%mod_key)^hash_key; } }; };template <typename T> class uset:public std::unordered_set<T,myhash::myhash<T>> { using SET=std::unordered_set<T,myhash::myhash<T>>; public: uset():SET(){SET::rehash(myhash::Bsizes[rand()%20]);} };template <typename T,typename U> class umap:public std::unordered_map<T,U,myhash::myhash<T>> { public: using MAP=std::unordered_map<T,U,myhash::myhash<T>>; umap():MAP(){MAP::rehash(myhash::Bsizes[rand()%20]);} };struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) *1e-6; }struct init_{init_(){ gettimeofday(&start, NULL); ios::sync_with_stdio(false); cin.tie(0); srand((unsigned int)time(NULL)); random_seed = RAND_MAX /2 + rand() / 2; }} init__;static const double EPS = 1e-14;static const long long INF = 1e18;static const long long mo = 1e9+7;#define ldout fixed << setprecision(40)template<int MOD>struct ModInt {static const int Mod = MOD;unsigned x;ModInt() : x(0) {}ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }int get() const { return (int)x; }ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }ModInt operator+(ModInt that) const { return ModInt(*this) += that; }ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }ModInt inverse() const {signed a = x, b = MOD, u = 1, v = 0;while(b) {signed t = a / b;a -= t * b; std::swap(a, b);u -= t * v; std::swap(u, v);}if(u < 0) u += Mod;ModInt res; res.x = (unsigned)u;return res;}bool operator==(ModInt that) const { return x == that.x; }bool operator!=(ModInt that) const { return x != that.x; }ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }};template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {ModInt<MOD> r = 1;while(k) {if(k & 1) r *= a;a *= a;k >>= 1;}return r;}typedef ModInt<1000000007> mint;typedef vector<mint> vmint;ostream &operator<<(ostream &o, const mint v) { o << v.x; return o; }// 行列xベクトルvector<mint> mul(vector<vector<mint>> A, vector<mint> x) {assert(A.size() >= 0); assert(A[0].size() == x.size());vector<mint> b(A.size());rep(i, A.size()) {rep(j, A[0].size()) {b[i] += A[i][j] * x[j];}}return b;}// 行列x行列vector<vector<mint>> mul(vector<vector<mint>> A, vector<vector<mint>> B) {assert(A[0].size() == B.size());vector<vector<mint>> C(A.size(), vector<mint>(B[0].size()));rep(i, A.size()) rep(j, B[0].size()) {rep(h, A[0].size()) {C[i][j] += A[i][h] * B[h][j];}}return C;}// ベクトル+ベクトルvector<mint> plu(vector<mint> x, vector<mint> y) {assert(x.size() == y.size());rep(i, x.size()) {y[i] += x[i];}return y;}// 行列+行列vector<vector<mint>> plu(vector<vector<mint>> A, vector<vector<mint>> B) {assert(A.size() == B.size());assert(A[0].size() == B[0].size());rep(i, A.size()) rep(j, A[0].size()) {B[i][j] += A[i][j];}return B;}vector<vector<mint>> transpose(vector<vector<mint>> A) {rep(i, A.size()) repi(j, i+1, A.size()) swap(A[i][j], A[j][i]);return A;}mint dot(vector<mint> x, vector<mint> y) {mint ret = 0;rep(i, x.size())ret += x[i] * y[i];return ret;}vector<mint> pow(vector<vector<mint>> A, vector<mint> x, long long k) {if (k == 0) return x;vector<vector<vector<mint>>> Ak; // Ak[i] = A^{2^i}Ak.pb(A);rep(i, 70)Ak.pb(mul(Ak[i], Ak[i]));ll cyc = 0;while (k) {if (k & 1)x = mul(Ak[cyc], x);k /= 2;cyc++;}return x;}// GF(mo)列sから、それを生成する最小線形漸化式Cを復元する//// 入力: 漸化式が生成したGF(mo)列s// 出力: d項間漸化式の係数C (size = d+1)// 漸化式// C_0 s_{n} + C_1 s_{n-1} + ... + C_{L} s{n-L} = 0// がsを生成した時、Cを求める。//// O(n^2)//// 例:// s = [1, 2, 4, 8] -> C = [1, 1000000005(-2)] (s[1] - 2 * s[0] = 0)// s = [1, 1, 1, 1] -> C = [1, 1000000006(-1)] (s[1] - s[0] = 0)int berlekampMassey(const vector<mint> &s, vector<mint> &C) {int N = (int)s.size();C.assign(N + 1, mint());vector<mint> B(N + 1, mint());C[0] = B[0] = 1;int degB = 0;vector<mint> T;int L = 0, m = 1;mint b = 1;for(int n = 0; n < N; ++ n) {mint d = s[n];for(int i = 1; i <= L; ++ i)d += C[i] * s[n - i];if(d == mint()) {++ m;} else {if(2 * L <= n)T.assign(C.begin(), C.begin() + (L + 1));mint coeff = -d * b.inverse();for(int i = -1; i <= degB; ++ i)C[m + i] += coeff * B[i];if(2 * L <= n) {L = n + 1 - L;B.swap(T);degB = (int)B.size() - 1;b = d;m = 1;} else {++ m;}}}C.resize(L + 1);return L;}// GF(mo)列aから、それを生成する最小線形漸化式\phiを復元する// berlekampMasseyとの違いは、係数の順序が違うのと安全用のassertチェックがあること。//// 入力: 漸化式が生成したGF(mo)列a// 出力: d項間漸化式の係数\phi (size = d+1)// 漸化式// \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0// がaを生成した時、\phiを求める。//// O(n^2)//// 例:// s = [1, 2, 4, 8] -> C = [1000000005(-2), 1] (s[1] - 2 * s[0] = 0)// s = [1, 1, 1, 1] -> C = [1000000006(-1), 1] (s[1] - s[0] = 0)void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) {assert(a.size() % 2 == 0);int L = berlekampMassey(a, phi);reverse(phi.begin(), phi.begin() + (L + 1));}// 漸化式// \phi_0 a_0 + \phi_1 a_1 + ... + \phi_L a_L = 0// と、initValues = a[0:phi.size()-1]が与えられる。// この時、a[k]をinitValues(=a[0:phi.size()-1])の線形結合の係数を返す。// a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1]//// O(n^2 log k)void linearlyRecurrentSequenceCoeffs(long long k, const vector<mint> &phi_in, vector<mint> &coeffs) {int d = (int)phi_in.size() - 1;assert(d >= 0);assert(phi_in[d].get() == 1);coeffs = vector<mint>(d);vector<mint> square;coeffs[0] = 1;int l = 0;while ((k >> l) > 1) ++l;for (; l >= 0; --l) {square.assign(d * 2 - 1, mint());rep(i, d) rep(j, d) square[i + j] += coeffs[i] * coeffs[j];for (int i = d * 2 - 2; i >= d; -- i) {mint c = square[i];if (c.x == 0) continue;rep(j, d) square[i - d + j] -= c * phi_in[j];}rep(i, d)coeffs[i] = square[i];if (k >> l & 1) {mint lc = coeffs[d - 1];for(int i = d - 1; i >= 1; -- i)coeffs[i] = coeffs[i - 1] - lc * phi_in[i];coeffs[0] = mint() - lc * phi_in[0];}}}// 漸化式// \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0// と、initValues = a[0:phi.size()-1]が与えられる。// この時、// a_{k}を求める//// O(n^2 log k)//// また、副産物として、a[k]をinitVectorの線形結合として表す係数coeffが得られる// a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1]//mint linearlyRecurrentSequenceValue(long long k, const vector<mint> &initValues, const vector<mint> &phi) {int d = phi.size() - 1;if(d == 0) return mint();assert(d <= (int)initValues.size());assert(k >= 0);if(k < (int)initValues.size())return initValues[(int)k];vector<mint> coeffs;linearlyRecurrentSequenceCoeffs(k, phi, coeffs);mint res; rep(i, d) res += coeffs[i] * initValues[i];return res;}// 線形漸化的数列aのk番目は?// O(n^2 log k)mint reconstruct(long long k, vector<mint> a) {if (a.size() % 2) a.pop_back();vector<mint> a_first_half;rep(i, a.size() / 2)a_first_half.push_back(a[i]);vector<mint> phi;computeMinimumPolynomialForLinearlyRecurrentSequence(a, phi);return linearlyRecurrentSequenceValue(k, a_first_half, phi);}int main(void) {ll n; cin >> n;ll m = 10;using mat = vector<vector<mint>>;using vec = vector<mint>;mat Adot = {{ 2,-1,-1, 4,-1, 6,-1, 6,-1, 0},{-1, 2,-1, 4, 4,-1,-1, 6,-1, 0},{-1,-1, 2,-1, 4, 6,-1, 6,-1, 0},{ 2, 2,-1, 2, 4,-1,-1, 4,-1, 0},{-1, 2, 2, 4, 2,-1,-1, 4,-1, 0},{-1,-1,-1,-1,-1, 4,-1, 4,-1,-1},{ 2,-1, 2,-1,-1,-1, 4,-1,-1, 0},{ 2, 2, 2, 2, 2,-1, 4, 2,-1, 0},{ 4, 4, 4, 6, 6, 8,-1, 8, 0,-1},{-1,-1,-1,-1,-1,-1,-1,-1,-1, 0},};Adot = transpose(Adot);mat A = Adot;rep(i, m) rep(j, m) A[i][j] = A[i][j] != -1;rep(i, m) rep(j, m) if (Adot[i][j] == -1) Adot[i][j] = 0;vec x = {0,0,0,0,0,0,0,0,1,0};vec ret(10);rep(i, n+1) {vec tmp = x;tmp = pow(A, tmp, n-i);tmp = mul(Adot, tmp);tmp = pow(A, tmp, i);ret = plu(ret, tmp);}cout << ret[9] << endl;return 0;}