結果
問題 | No.529 帰省ラッシュ |
ユーザー | kimiyuki |
提出日時 | 2017-06-10 17:52:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,640 bytes |
コンパイル時間 | 1,952 ms |
コンパイル使用メモリ | 121,160 KB |
実行使用メモリ | 41,356 KB |
最終ジャッジ日時 | 2024-09-24 15:44:43 |
合計ジャッジ時間 | 7,162 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 229 ms
41,356 KB |
testcase_14 | WA | - |
testcase_15 | AC | 456 ms
33,300 KB |
testcase_16 | AC | 457 ms
33,296 KB |
testcase_17 | AC | 438 ms
39,352 KB |
testcase_18 | AC | 417 ms
39,428 KB |
testcase_19 | AC | 407 ms
36,516 KB |
ソースコード
#include <algorithm> #include <cassert> #include <cmath> #include <cstdio> #include <functional> #include <queue> #include <stack> #include <tuple> #include <vector> #define repeat(i, n) for (int i = 0; (i) < int(n); ++(i)) #define repeat_reverse(i, n) for (int i = (n)-1; (i) >= 0; --(i)) #define whole(f, x, ...) ([&](decltype((x)) whole) { return (f)(begin(whole), end(whole), ## __VA_ARGS__); })(x) using namespace std; template <class T> inline void setmax(T & a, T const & b) { a = max(a, b); } /** * @brief 2-edge-connected components decomposition * @param g an adjacent list of the simple undirected graph * @note O(V + E) */ pair<int, vector<int> > decompose_to_two_edge_connected_components(vector<vector<int> > const & g) { int n = g.size(); vector<int> imos(n); { // imos[i] == 0 iff the edge i -> parent is a bridge vector<char> used(n); // 0: unused ; 1: exists on stack ; 2: removed from stack function<void (int, int)> go = [&](int i, int parent) { used[i] = 1; for (int j : g[i]) if (j != parent) { if (used[j] == 0) { go(j, i); imos[i] += imos[j]; } else if (used[j] == 1) { imos[i] += 1; imos[j] -= 1; } } used[i] = 2; }; repeat (i, n) if (used[i] == 0) { go(i, -1); } } int size = 0; vector<int> component_of(n, -1); { function<void (int)> go = [&](int i) { for (int j : g[i]) if (component_of[j] == -1) { component_of[j] = imos[j] == 0 ? size ++ : component_of[i]; go(j); } }; repeat (i, n) if (component_of[i] == -1) { component_of[i] = size ++; go(i); } } return { size, move(component_of) }; } vector<vector<int> > decomposed_graph(int size, vector<int> const & component_of, vector<vector<int> > const & g) { int n = g.size(); vector<vector<int> > h(size); repeat (i, n) for (int j : g[i]) { if (component_of[i] != component_of[j]) { h[component_of[i]].push_back(component_of[j]); } } repeat (k, size) { whole(sort, h[k]); h[k].erase(whole(unique, h[k]), h[k].end()); } return h; } /** * @brief heavy light decomposition * @description for given rooted tree G = (V, E), decompose the vertices to disjoint paths, and construct new small rooted tree G' = (V', E') of the disjoint paths. * @see http://math314.hateblo.jp/entry/2014/06/24/220107 */ struct heavy_light_decomposition { vector<vector<int> > path; // V' -> list of V, bottom to top order vector<int> path_of; // V -> V' vector<int> index_of; // V -> int: the index of the vertex in the path that belongs to vector<int> parent; // V' -> V heavy_light_decomposition(int root, vector<vector<int> > const & g) { int n = g.size(); vector<int> tour_parent(n, -1); vector<int> euler_tour(n); { int i = 0; stack<int> stk; tour_parent[root] = -1; euler_tour[i ++] = root; stk.push(root); while (not stk.empty()) { int x = stk.top(); stk.pop(); for (int y : g[x]) if (y != tour_parent[x]) { tour_parent[y] = x; euler_tour[i ++] = y; stk.push(y); } } } path_of.resize(n); index_of.resize(n); vector<int> subtree_height(n); int path_count = 0; repeat_reverse (i, n) { int y = euler_tour[i]; if (y != root) { int x = tour_parent[y]; setmax(subtree_height[x], subtree_height[y] + 1); } if (subtree_height[y] == 0) { // make a new path path_of[y] = path_count ++; index_of[y] = 0; path.emplace_back(); path.back().push_back(y); parent.push_back(tour_parent[y]); } else { // add to an existing path int i = -1; for (int z : g[y]) { if (subtree_height[z] == subtree_height[y] - 1) { i = path_of[z]; break; } } assert (i != -1); path_of[y] = i; index_of[y] = path[i].size(); path[i].push_back(y); parent[i] = tour_parent[y]; } } } }; /** * @brief lowest common ancestor with doubling */ struct lowest_common_ancestor { vector<vector<int> > a; vector<int> depth; lowest_common_ancestor() = default; /** * @note O(N \log N) * @param g an adjacent list of the tree */ lowest_common_ancestor(int root, vector<vector<int> > const & g) { int n = g.size(); int log_n = max<int>(1, ceil(log2(n))); a.resize(log_n, vector<int>(n, -1)); depth.resize(n, -1); { auto & parent = a[0]; stack<int> stk; depth[root] = 0; parent[root] = -1; stk.push(root); while (not stk.empty()) { int x = stk.top(); stk.pop(); for (int y : g[x]) if (depth[y] == -1) { depth[y] = depth[x] + 1; parent[y] = x; stk.push(y); } } } repeat (k, log_n-1) { repeat (i, n) { if (a[k][i] != -1) { a[k+1][i] = a[k][a[k][i]]; } } } } /** * @brief find the LCA of x and y * @note O(log N) */ int operator () (int x, int y) const { int log_n = a.size(); if (depth[x] < depth[y]) swap(x,y); repeat_reverse (k, log_n) { if (a[k][x] != -1 and depth[a[k][x]] >= depth[y]) { x = a[k][x]; } } assert (depth[x] == depth[y]); assert (x != -1); if (x == y) return x; repeat_reverse (k, log_n) { if (a[k][x] != a[k][y]) { x = a[k][x]; y = a[k][y]; } } assert (x != y); assert (a[0][x] == a[0][y]); return a[0][x]; } /** * @brief find the descendant of x for y */ int descendant (int x, int y) const { assert (depth[x] < depth[y]); int log_n = a.size(); repeat_reverse (k, log_n) { if (a[k][y] != -1 and depth[a[k][y]] >= depth[x]+1) { y = a[k][y]; } } assert (a[0][y] == x); return y; } }; template <typename SegmentTree> struct heavy_light_decomposition_node_adapter { typedef typename SegmentTree::monoid_type CommutativeMonoid; typedef typename CommutativeMonoid::type underlying_type; vector<SegmentTree> segtree; heavy_light_decomposition & hl; lowest_common_ancestor & lca; CommutativeMonoid mon; heavy_light_decomposition_node_adapter( heavy_light_decomposition & a_hl, lowest_common_ancestor & a_lca, underlying_type initial_value = CommutativeMonoid().unit(), CommutativeMonoid const & a_mon = CommutativeMonoid()) : hl(a_hl), lca(a_lca), mon(a_mon) { repeat (i, hl.path.size()) { segtree.emplace_back(hl.path[i].size(), initial_value, a_mon); } } void node_set(int x, underlying_type value) { int i = hl.path_of[x]; int j = hl.index_of[x]; segtree[i].point_set(j, value); } template <class Func> void path_do_something(int x, int y, Func func) { int z = lca(x, y); auto climb = [&](int & x) { while (hl.path_of[x] != hl.path_of[z]) { int i = hl.path_of[x]; func(segtree[i], hl.index_of[x], hl.path[i].size()); x = hl.parent[i]; } }; climb(x); climb(y); int i = hl.path_of[z]; if (x != y) { if (hl.index_of[x] > hl.index_of[y]) swap(x, y); func(segtree[i], hl.index_of[x], hl.index_of[y] + 1); } } underlying_type path_concat(int x, int y) { underlying_type acc = mon.unit(); path_do_something(x, y, [&](SegmentTree & segtree, int l, int r) { acc = mon.append(acc, segtree.range_concat(l, r)); }); return acc; } }; template <class Monoid> struct segment_tree { typedef Monoid monoid_type; typedef typename Monoid::type underlying_type; int n; vector<underlying_type> a; Monoid mon; segment_tree() = default; segment_tree(int a_n, underlying_type initial_value = Monoid().unit(), Monoid const & a_mon = Monoid()) : mon(a_mon) { n = 1; while (n < a_n) n *= 2; a.resize(2*n-1, mon.unit()); fill(a.begin() + (n-1), a.begin() + (n-1 + a_n), initial_value); // set initial values repeat_reverse (i, n-1) a[i] = mon.append(a[2*i+1], a[2*i+2]); // propagate initial values } void point_set(int i, underlying_type z) { // 0-based a[i+n-1] = z; for (i = (i+n)/2; i > 0; i /= 2) { // 1-based a[i-1] = mon.append(a[2*i-1], a[2*i]); } } underlying_type range_concat(int l, int r) { // 0-based, [l, r) underlying_type lacc = mon.unit(), racc = mon.unit(); for (l += n, r += n; l < r; l /= 2, r /= 2) { // 1-based loop, 2x faster than recursion if (l % 2 == 1) lacc = mon.append(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon.append(a[(-- r) - 1], racc); } return mon.append(lacc, racc); } }; struct index_max_t { struct type { int index, value; }; type unit() const { return { -1, -1 }; } type append(type a, type b) { return a.value > b.value ? a : b; } }; typedef index_max_t::type node_t; int main() { int n, m, query; scanf("%d%d%d", &n, &m, &query); vector<vector<int> > g(n); repeat (i, m) { int a, b; scanf("%d%d", &a, &b); -- a; -- b; g[a].push_back(b); g[b].push_back(a); } int size; vector<int> component_of; tie(size, component_of) = decompose_to_two_edge_connected_components(g); vector<priority_queue<int> > que(size); vector<vector<int> > h = decomposed_graph(size, component_of, g); constexpr int root = 0; heavy_light_decomposition hl(root, h); lowest_common_ancestor lca(root, h); heavy_light_decomposition_node_adapter<segment_tree<index_max_t> > segtree(hl, lca); repeat (i, size) { segtree.node_set(i, (node_t) { i, -1 }); } while (query --) { int type; scanf("%d", &type); if (type == 1) { int u, w; scanf("%d%d", &u, &w); -- u; int i = component_of[u]; que[i].push(w); segtree.node_set(i, (node_t) { i, que[i].top() }); } else if (type == 2) { int s, t; scanf("%d%d", &s, &t); -- s; -- t; auto result = segtree.path_concat(component_of[s], component_of[t]); int i = result.index; if (i != -1 and not que[i].empty()) { que[i].pop(); int w = que[i].empty() ? -1 : que[i].top(); segtree.node_set(i, (node_t) { i, w }); } printf("%d\n", result.value); } } return 0; }