結果

問題 No.534 フィボナッチフィボナッチ数
ユーザー satanicsatanic
提出日時 2017-06-24 00:10:48
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 2,000 ms
コード長 12,295 bytes
コンパイル時間 1,284 ms
コンパイル使用メモリ 118,708 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-03 03:57:56
合計ジャッジ時間 2,226 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #

// need
#include <iostream>
#include <algorithm>

// data structure
#include <bitset>
//#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
//#include <array>
//#include <tuple>
//#include <unordered_map>
//#include <unordered_set>
#include <complex>
//#include <deque>
#include<valarray>

// stream
//#include <istream>
//#include <sstream>
//#include <ostream>
#include <fstream>

// etc
#include <cassert>
#include <functional>
#include <iomanip>
//#include <typeinfo>
//#include <chrono>
#include <random>
#include <numeric>

#define INIT std::ios::sync_with_stdio(false);std::cin.tie(0);
#define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; }
template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); }
#define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i<n; ++i){MACRO_VEC_ROW_Scan(i, __VA_ARGS__);}
template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); }
template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); }
#define OUT(d) std::cout<<d;
#define FOUT(n, d) std::cout<<std::fixed<<std::setprecision(n)<<d;
#define SOUT(n, c, d) std::cout<<std::setw(n)<<std::setfill(c)<<d;
#define SP std::cout<<" ";
#define TAB std::cout<<"\t";
#define BR std::cout<<"\n";
#define ENDL std::cout<<std::endl;
#define FLUSH std::cout<<std::flush;
#define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i;
#define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& r:c)for(auto& i:r)std::cin>>i;
#define ALL(a) (a).begin(),(a).end()
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i)
#define REP(i, n) for(int i=0;i<int(n);++i)
#define RREP(i, n) for(int i=(n)-1;i>=0;--i)
#define FORLL(i, a, b) for(ll i=ll(a);i<ll(b);++i)
#define RFORLL(i, a, b) for(ll i=ll(b)-1;i>=ll(a);--i)
#define REPLL(i, n) for(ll i=0;i<ll(n);++i)
#define RREPLL(i, n) for(ll i=ll(n)-1;i>=0;--i)
#define PAIR std::pair<int, int>
#define PAIRLL std::pair<ll, ll>
#define IN(a, x, b) (a<=x && x<b)
#define SHOW(d) {std::cerr << #d << "\t:" << d << "\n";}
#define SHOWVECTOR(v) {std::cerr << #v << "\t:";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";}
#define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}}
#define SHOWPAIR(p) {std::cerr << #p << "\t:(" << p.first << ",\t" << p.second << ")\n";}
#define SHOWPAIRVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr<<'('<<yyy.first<<", "<<yyy.second<<") ";}std::cerr << "\n";}}
#define SHOWPAIRVECTOR(v) {for(const auto& xxx:v){std::cerr<<'('<<xxx.first<<", "<<xxx.second<<") ";}std::cerr<<"\n";}
#define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t:";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";}
template<typename T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; }
template<typename T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; }
#define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]"
#define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;}
//void CHECKTIME(std::function<void()> f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast<std::chrono::nanoseconds>((end - start)).count(); std::cerr << "[Time:" << res << "ns  (" << res / (1.0e9) << "s)]\n"; }

#define int ll
using ll = long long;
using ull = unsigned long long;
constexpr int INFINT = 1 << 30;                          // 1.07x10^ 9
constexpr int INFINT_LIM = (1LL << 31) - 1;              // 2.15x10^ 9
constexpr ll INFLL = 1LL << 60;                          // 1.15x10^18
constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62);  // 9.22x10^18
constexpr double EPS = 1e-7;
constexpr int MOD = 1000000007;
constexpr double PI = 3.141592653589793238462643383279;

template<class T>
class Matrix {
private:
	std::valarray<std::valarray<T>> mat;
public:
	Matrix(size_t m = 0, size_t n = 0, T init = 0) {
		if (n == 0) n = m;
		mat.resize(m);
		for (size_t i = 0; i < m; ++i) mat[i].resize(n, init);
	}
	Matrix(std::valarray<std::valarray<T>> a) { mat = a; }
	Matrix<T> init(size_t m = 0, size_t n = 0, T init = 0) {
		if (n == 0) n = m;
		mat.resize(m);
		for (size_t i = 0; i < m; ++i) mat[i].resize(n, init);
		return *this;
	}
	std::valarray<T>& operator[](size_t i) { return mat[i]; }
	const std::valarray<T>& operator[](size_t i) const { return mat[i]; }
	Matrix<T>& operator=(const Matrix<T>& r) {
		for (size_t i = 0; i < mat.size(); ++i) mat[i] = r[i];
		return *this;
	}
	Matrix<T> operator+() const { return mat; }
	Matrix<T> operator-() const {
		Matrix<T> res(mat.size());
		for (size_t i = 0; i < mat.size(); ++i) res[i] = -mat[i];
		return res;
	}
	Matrix<T>& operator+=(const Matrix<T>& r) {
		for (size_t i = 0; i < mat.size(); ++i) mat[i] += r[i];
		return *this;
	}
	Matrix<T>& operator+=(const T& x) {
		for (size_t i = 0; i < mat.size(); ++i) mat[i] += x;
		return *this;
	}
	Matrix<T>& operator-=(const Matrix<T>& r) { return *this += -r; }
	Matrix<T>& operator-=(const T& x) { return *this += -x; }
	Matrix<T>& operator*=(const Matrix<T>& r) { // O(N^3)
		Matrix<T> res(*this);
		for (size_t i = 0; i < mat.size(); ++i) {
			for (size_t j = 0; j < r[0].size(); ++j) {
				res[i][j] = 0;
				for (size_t k = 0; k < mat[0].size(); ++k) {
					res[i][j] += mat[i][k] * r[k][j];
				}
			}
		}
		return *this = res;
	}
	Matrix<T>& operator*=(const T& x) {
		for (size_t i = 0; i < mat.size(); ++i) mat[i] *= x;
		return *this;
	}
	Matrix<T>& operator^=(ll p) { // O(N^3 logP)
		Matrix<T> res(*this);

		for (size_t i = 0; i < mat.size(); ++i) {
			for (size_t j = 0; j < mat[0].size(); ++j) {
				res[i][j] = i == j;
			}
		}
		while (p) {
			if (p & 1) res *= (*this);
			(*this) *= (*this);
			p >>= 1;
		}
		for (size_t i = 0; i < mat.size(); ++i) mat[i] = res[i];
		return *this;
	}
	Matrix<T> operator+(const Matrix& r) const {
		Matrix<T> res(mat);
		return res += r;
	}
	Matrix<T> operator-(const Matrix& r) const {
		Matrix<T> res(mat);
		return res -= r;
	}
	Matrix<T> operator*(const Matrix& r) const {
		Matrix<T> res(mat);
		return res *= r;
	}
	Matrix<T> operator*(const T& r) const {
		Matrix<T> res(mat);
		return res *= r;
	}
	Matrix<T> operator^(const int& p) const {
		Matrix<T> res(mat);
		return res ^= p;
	}
	Matrix<T> t() const {
		Matrix<T> res(mat[0].size(), mat.size(), 0);
		for (size_t i = 0; i < mat[0].size(); ++i) {
			for (size_t j = 0; j < mat.size(); ++j) {
				res[i][j] = mat[j][i];
			}
		}
		return res;
	}
	double det() const {
		TRY(mat.size() != mat[0].size(), "Matrix is not square.");
		Matrix<double> a(mat.size());
		for (size_t i = 0; i < mat.size(); ++i) {
			for (size_t j = 0; j < mat.size(); ++j) {
				a[i][j] = static_cast<double>(mat[i][j]);
			}
		}
		double d = 1;
		for (int i = 0; i < mat.size(); ++i) {
			int pivot = i;
			for (size_t j = i + 1; j < mat.size(); ++j) {
				if (std::abs(a[j][i]) > std::abs(a[pivot][i])) pivot = j;
			}
			std::swap(a[pivot], a[i]);
			d *= a[i][i] * ((i != pivot) ? -1 : 1);
			if (std::abs(a[i][i]) < EPS) break;
			for (size_t j = i + 1; j < mat.size(); ++j) {
				for (int k = mat.size() - 1; k >= i; --k) {
					a[j][k] -= a[i][k] * a[j][i] / a[i][i];
				}
			}
		}
		return d;
	}
	T tr() const {
		T res = 0;
		for (size_t i = 0; i < mat.size(); ++i) {
			res += mat[i][i];
		}
		return res;
	}
	size_t rank() const {
		Matrix<double> a(mat.size());
		for (size_t i = 0; i < mat.size(); ++i) {
			for (size_t j = 0; j < mat.size(); ++j) {
				a[i][j] = static_cast<double>(mat[i][j]);
			}
		}
		size_t r = 0;
		for (int i = 0; r < static_cast<int>(mat.size()) && i < static_cast<int>(mat[0].size()); ++i) {
			int pivot = r;
			for (size_t j = r + 1; j < mat.size(); ++j) {
				if (std::abs(a[j][i]) > std::abs(a[pivot][i])) pivot = j;
			}
			std::swap(a[pivot], a[r]);
			if (std::abs(a[r][i]) < EPS) continue;
			for (int k = mat[0].size() - 1; k >= i; --k) {
				a[r][k] /= a[r][i];
			}
			for (size_t j = r + 1; j < mat.size(); ++j) {
				for (size_t k = i; k < mat[0].size(); ++k) {
					a[j][k] -= a[r][k] * a[j][i];
				}
			}
			++r;
		}
		return r;
	}
	static Matrix<T> getUnit(size_t n) {
		Matrix<T> res(n, n, 0);
		for (size_t i = 0; i < n; ++i) res[i][i] = 1;
		return res;
	}
	void show() const {
		for (const auto& r : mat) {
			for (const auto & x : r) {
				std::cerr << x << "\t";
			}
			std::cerr << std::endl;
		}
	}
};

class ModInt {
	friend std::istream& operator>>(std::istream& is, ModInt& obj);
private:
	int M;
	bool M_is_prime;
	bool isPrime() {
		for (int i = 2; i * i <= M; ++i) if (M%i == 0) return false;
		return true;
	}
public:
	int val;
	ModInt() : val(0), M(1000000007), M_is_prime(isPrime()) {}
	ModInt(int n, int m) : val(n%m), M(m), M_is_prime(isPrime()) {}
	operator int() { return val; }
	ModInt& operator=(const signed& r) {
		val = r % M;
		return *this;
	}
	ModInt operator+() const { return *this; }
	ModInt operator-() const { return ModInt(M - val, M); }
	ModInt& operator+=(const ModInt& r) {
		val += r.val;
		val %= M;
		return *this;
	}
	ModInt& operator+=(const int r) {
		*this += ModInt(r, M);
		return *this;
	}
	ModInt& operator-=(const ModInt& r) { return *this += -r + M; }
	ModInt& operator-=(const int& r) { return *this += -r + M; }
	ModInt& operator++() { return *this += 1; }
	ModInt& operator++(signed tmp) { return *this += 1; }
	ModInt& operator--() { return *this -= 1; }
	ModInt& operator--(signed tmp) { return *this -= 1; }
	ModInt& operator*=(const ModInt& r) {
		val *= r.val;
		val %= M;
		return *this;
	}
	ModInt& operator*=(const int& r) {
		val *= r%M;
		val %= M;
		return *this;
	}
	ModInt& operator^=(int p) { // O(log(p))
		ModInt res(1, M);
		while (p) {
			if (p & 1) res *= *this;
			*this *= *this;
			p >>= 1;
		}
		return *this = res;
	}
	ModInt& operator^=(const ModInt& r) { // O(log(p))
		int p = r.val;
		return *this ^= p;
	}
	ModInt& operator/=(ModInt r) { // M must be a prime.
		assert(M_is_prime);
		return *this *= r ^= (M - 2);
	}
	ModInt& operator/=(int r) { // M must be a prime.
		return *this /= ModInt(r, M);
	}
	ModInt operator+(const ModInt& r) const {
		auto res(*this);
		return res += r;
	}
	ModInt operator-(const ModInt& r) const {
		auto res(*this);
		return res -= r;
	}
	ModInt operator*(const ModInt& r) const {
		auto res(*this);
		return res *= r;
	}
	ModInt operator^(const ModInt& r) const {
		auto res(*this);
		return res ^= r;
	}
	ModInt operator/(const ModInt& r) const { // M must be a prime.
		auto res(*this);
		return res /= r;
	}
	ModInt operator+(const int& r) const {
		auto res(*this);
		return res += r;
	}
	ModInt operator-(const int& r) const {
		auto res(*this);
		return res -= r;
	}
	ModInt operator*(const int& r) const {
		auto res(*this);
		return res *= r;
	}
	ModInt operator^(const int& r) const {
		auto res(*this);
		return res ^= r;
	}
	ModInt operator/(const int& r) const {
		auto res(*this);
		return res /= r;
	}
};
std::ostream& operator<<(std::ostream& os, const ModInt& obj) {
	os << obj.val;
	return os;
}
/* friend */ std::istream& operator>>(std::istream& is, ModInt& obj) {
	is >> obj.val;
	obj.val %= obj.M;
	return is;
}
/** ModInt **/

signed main() {
	INIT;
	VAR(int, n);
	if (n == 0) {
		OUT(0)BR;
		return 0;
	}
	Matrix<ModInt> A(2, 2, ModInt(1, MOD*2+2));
	A[1][1] = ModInt(0, MOD*2+2);
	A ^= n - 1;
	int a = A[0][0];
	Matrix<ModInt> B(2, 2, ModInt(1, MOD));
	B[1][1] = ModInt(0, MOD);
	B ^= a-1;
	int b = B[0][0];
	OUT(b)BR;
	return 0;
}
0