結果
問題 | No.534 フィボナッチフィボナッチ数 |
ユーザー | satanic |
提出日時 | 2017-06-24 00:10:48 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 12,295 bytes |
コンパイル時間 | 1,284 ms |
コンパイル使用メモリ | 118,708 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-03 03:57:56 |
合計ジャッジ時間 | 2,226 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 42 |
ソースコード
// need #include <iostream> #include <algorithm> // data structure #include <bitset> //#include <list> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <utility> #include <vector> //#include <array> //#include <tuple> //#include <unordered_map> //#include <unordered_set> #include <complex> //#include <deque> #include<valarray> // stream //#include <istream> //#include <sstream> //#include <ostream> #include <fstream> // etc #include <cassert> #include <functional> #include <iomanip> //#include <typeinfo> //#include <chrono> #include <random> #include <numeric> #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i<n; ++i){MACRO_VEC_ROW_Scan(i, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define OUT(d) std::cout<<d; #define FOUT(n, d) std::cout<<std::fixed<<std::setprecision(n)<<d; #define SOUT(n, c, d) std::cout<<std::setw(n)<<std::setfill(c)<<d; #define SP std::cout<<" "; #define TAB std::cout<<"\t"; #define BR std::cout<<"\n"; #define ENDL std::cout<<std::endl; #define FLUSH std::cout<<std::flush; #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& r:c)for(auto& i:r)std::cin>>i; #define ALL(a) (a).begin(),(a).end() #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i) #define REP(i, n) for(int i=0;i<int(n);++i) #define RREP(i, n) for(int i=(n)-1;i>=0;--i) #define FORLL(i, a, b) for(ll i=ll(a);i<ll(b);++i) #define RFORLL(i, a, b) for(ll i=ll(b)-1;i>=ll(a);--i) #define REPLL(i, n) for(ll i=0;i<ll(n);++i) #define RREPLL(i, n) for(ll i=ll(n)-1;i>=0;--i) #define PAIR std::pair<int, int> #define PAIRLL std::pair<ll, ll> #define IN(a, x, b) (a<=x && x<b) #define SHOW(d) {std::cerr << #d << "\t:" << d << "\n";} #define SHOWVECTOR(v) {std::cerr << #v << "\t:";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";} #define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}} #define SHOWPAIR(p) {std::cerr << #p << "\t:(" << p.first << ",\t" << p.second << ")\n";} #define SHOWPAIRVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr<<'('<<yyy.first<<", "<<yyy.second<<") ";}std::cerr << "\n";}} #define SHOWPAIRVECTOR(v) {for(const auto& xxx:v){std::cerr<<'('<<xxx.first<<", "<<xxx.second<<") ";}std::cerr<<"\n";} #define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t:";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";} template<typename T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; } template<typename T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } #define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]" #define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;} //void CHECKTIME(std::function<void()> f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast<std::chrono::nanoseconds>((end - start)).count(); std::cerr << "[Time:" << res << "ns (" << res / (1.0e9) << "s)]\n"; } #define int ll using ll = long long; using ull = unsigned long long; constexpr int INFINT = 1 << 30; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-7; constexpr int MOD = 1000000007; constexpr double PI = 3.141592653589793238462643383279; template<class T> class Matrix { private: std::valarray<std::valarray<T>> mat; public: Matrix(size_t m = 0, size_t n = 0, T init = 0) { if (n == 0) n = m; mat.resize(m); for (size_t i = 0; i < m; ++i) mat[i].resize(n, init); } Matrix(std::valarray<std::valarray<T>> a) { mat = a; } Matrix<T> init(size_t m = 0, size_t n = 0, T init = 0) { if (n == 0) n = m; mat.resize(m); for (size_t i = 0; i < m; ++i) mat[i].resize(n, init); return *this; } std::valarray<T>& operator[](size_t i) { return mat[i]; } const std::valarray<T>& operator[](size_t i) const { return mat[i]; } Matrix<T>& operator=(const Matrix<T>& r) { for (size_t i = 0; i < mat.size(); ++i) mat[i] = r[i]; return *this; } Matrix<T> operator+() const { return mat; } Matrix<T> operator-() const { Matrix<T> res(mat.size()); for (size_t i = 0; i < mat.size(); ++i) res[i] = -mat[i]; return res; } Matrix<T>& operator+=(const Matrix<T>& r) { for (size_t i = 0; i < mat.size(); ++i) mat[i] += r[i]; return *this; } Matrix<T>& operator+=(const T& x) { for (size_t i = 0; i < mat.size(); ++i) mat[i] += x; return *this; } Matrix<T>& operator-=(const Matrix<T>& r) { return *this += -r; } Matrix<T>& operator-=(const T& x) { return *this += -x; } Matrix<T>& operator*=(const Matrix<T>& r) { // O(N^3) Matrix<T> res(*this); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < r[0].size(); ++j) { res[i][j] = 0; for (size_t k = 0; k < mat[0].size(); ++k) { res[i][j] += mat[i][k] * r[k][j]; } } } return *this = res; } Matrix<T>& operator*=(const T& x) { for (size_t i = 0; i < mat.size(); ++i) mat[i] *= x; return *this; } Matrix<T>& operator^=(ll p) { // O(N^3 logP) Matrix<T> res(*this); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < mat[0].size(); ++j) { res[i][j] = i == j; } } while (p) { if (p & 1) res *= (*this); (*this) *= (*this); p >>= 1; } for (size_t i = 0; i < mat.size(); ++i) mat[i] = res[i]; return *this; } Matrix<T> operator+(const Matrix& r) const { Matrix<T> res(mat); return res += r; } Matrix<T> operator-(const Matrix& r) const { Matrix<T> res(mat); return res -= r; } Matrix<T> operator*(const Matrix& r) const { Matrix<T> res(mat); return res *= r; } Matrix<T> operator*(const T& r) const { Matrix<T> res(mat); return res *= r; } Matrix<T> operator^(const int& p) const { Matrix<T> res(mat); return res ^= p; } Matrix<T> t() const { Matrix<T> res(mat[0].size(), mat.size(), 0); for (size_t i = 0; i < mat[0].size(); ++i) { for (size_t j = 0; j < mat.size(); ++j) { res[i][j] = mat[j][i]; } } return res; } double det() const { TRY(mat.size() != mat[0].size(), "Matrix is not square."); Matrix<double> a(mat.size()); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < mat.size(); ++j) { a[i][j] = static_cast<double>(mat[i][j]); } } double d = 1; for (int i = 0; i < mat.size(); ++i) { int pivot = i; for (size_t j = i + 1; j < mat.size(); ++j) { if (std::abs(a[j][i]) > std::abs(a[pivot][i])) pivot = j; } std::swap(a[pivot], a[i]); d *= a[i][i] * ((i != pivot) ? -1 : 1); if (std::abs(a[i][i]) < EPS) break; for (size_t j = i + 1; j < mat.size(); ++j) { for (int k = mat.size() - 1; k >= i; --k) { a[j][k] -= a[i][k] * a[j][i] / a[i][i]; } } } return d; } T tr() const { T res = 0; for (size_t i = 0; i < mat.size(); ++i) { res += mat[i][i]; } return res; } size_t rank() const { Matrix<double> a(mat.size()); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < mat.size(); ++j) { a[i][j] = static_cast<double>(mat[i][j]); } } size_t r = 0; for (int i = 0; r < static_cast<int>(mat.size()) && i < static_cast<int>(mat[0].size()); ++i) { int pivot = r; for (size_t j = r + 1; j < mat.size(); ++j) { if (std::abs(a[j][i]) > std::abs(a[pivot][i])) pivot = j; } std::swap(a[pivot], a[r]); if (std::abs(a[r][i]) < EPS) continue; for (int k = mat[0].size() - 1; k >= i; --k) { a[r][k] /= a[r][i]; } for (size_t j = r + 1; j < mat.size(); ++j) { for (size_t k = i; k < mat[0].size(); ++k) { a[j][k] -= a[r][k] * a[j][i]; } } ++r; } return r; } static Matrix<T> getUnit(size_t n) { Matrix<T> res(n, n, 0); for (size_t i = 0; i < n; ++i) res[i][i] = 1; return res; } void show() const { for (const auto& r : mat) { for (const auto & x : r) { std::cerr << x << "\t"; } std::cerr << std::endl; } } }; class ModInt { friend std::istream& operator>>(std::istream& is, ModInt& obj); private: int M; bool M_is_prime; bool isPrime() { for (int i = 2; i * i <= M; ++i) if (M%i == 0) return false; return true; } public: int val; ModInt() : val(0), M(1000000007), M_is_prime(isPrime()) {} ModInt(int n, int m) : val(n%m), M(m), M_is_prime(isPrime()) {} operator int() { return val; } ModInt& operator=(const signed& r) { val = r % M; return *this; } ModInt operator+() const { return *this; } ModInt operator-() const { return ModInt(M - val, M); } ModInt& operator+=(const ModInt& r) { val += r.val; val %= M; return *this; } ModInt& operator+=(const int r) { *this += ModInt(r, M); return *this; } ModInt& operator-=(const ModInt& r) { return *this += -r + M; } ModInt& operator-=(const int& r) { return *this += -r + M; } ModInt& operator++() { return *this += 1; } ModInt& operator++(signed tmp) { return *this += 1; } ModInt& operator--() { return *this -= 1; } ModInt& operator--(signed tmp) { return *this -= 1; } ModInt& operator*=(const ModInt& r) { val *= r.val; val %= M; return *this; } ModInt& operator*=(const int& r) { val *= r%M; val %= M; return *this; } ModInt& operator^=(int p) { // O(log(p)) ModInt res(1, M); while (p) { if (p & 1) res *= *this; *this *= *this; p >>= 1; } return *this = res; } ModInt& operator^=(const ModInt& r) { // O(log(p)) int p = r.val; return *this ^= p; } ModInt& operator/=(ModInt r) { // M must be a prime. assert(M_is_prime); return *this *= r ^= (M - 2); } ModInt& operator/=(int r) { // M must be a prime. return *this /= ModInt(r, M); } ModInt operator+(const ModInt& r) const { auto res(*this); return res += r; } ModInt operator-(const ModInt& r) const { auto res(*this); return res -= r; } ModInt operator*(const ModInt& r) const { auto res(*this); return res *= r; } ModInt operator^(const ModInt& r) const { auto res(*this); return res ^= r; } ModInt operator/(const ModInt& r) const { // M must be a prime. auto res(*this); return res /= r; } ModInt operator+(const int& r) const { auto res(*this); return res += r; } ModInt operator-(const int& r) const { auto res(*this); return res -= r; } ModInt operator*(const int& r) const { auto res(*this); return res *= r; } ModInt operator^(const int& r) const { auto res(*this); return res ^= r; } ModInt operator/(const int& r) const { auto res(*this); return res /= r; } }; std::ostream& operator<<(std::ostream& os, const ModInt& obj) { os << obj.val; return os; } /* friend */ std::istream& operator>>(std::istream& is, ModInt& obj) { is >> obj.val; obj.val %= obj.M; return is; } /** ModInt **/ signed main() { INIT; VAR(int, n); if (n == 0) { OUT(0)BR; return 0; } Matrix<ModInt> A(2, 2, ModInt(1, MOD*2+2)); A[1][1] = ModInt(0, MOD*2+2); A ^= n - 1; int a = A[0][0]; Matrix<ModInt> B(2, 2, ModInt(1, MOD)); B[1][1] = ModInt(0, MOD); B ^= a-1; int b = B[0][0]; OUT(b)BR; return 0; }