結果

問題 No.541 3 x N グリッド上のサイクルの個数
ユーザー maimai
提出日時 2017-06-30 23:54:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,884 bytes
コンパイル時間 2,786 ms
コンパイル使用メモリ 220,292 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-04 21:53:05
合計ジャッジ時間 3,972 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,820 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 WA -
testcase_51 WA -
testcase_52 WA -
testcase_53 WA -
testcase_54 WA -
testcase_55 WA -
testcase_56 WA -
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
testcase_60 WA -
testcase_61 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In member function '{anonymous}::MaiScanner& {anonymous}::MaiScanner::operator>>(std::string&)':
main.cpp:72:9: warning: no return statement in function returning non-void [-Wreturn-type]
   72 |         }
      |         ^

ソースコード

diff #

#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"

using namespace std;
typedef long long int ll;

#define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;
#define debugm(m) printf("L%d %s is..\n",__LINE__,#m);for(auto v:m){for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) printf("L%d %s is => ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;
#define debugaa(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[x][y]<<" ";}cout<<endl;}
#define debugaar(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}
#define ALL(v) (v).begin(),(v).end()
#define repeat(l) for(auto cnt=0;cnt<(l);++cnt)
#define iterate(b,e) for(auto cnt=(b);cnt!=(e);++cnt)
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
template<typename T1, typename T2>
ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }

#define TIME chrono::system_clock::now()
#define MILLISEC(t) (chrono::duration_cast<chrono::milliseconds>(t).count())
namespace {
    std::chrono::system_clock::time_point ttt;
    void tic() { ttt = TIME; }
    void toc() { fprintf(stderr, "TIME : %lldms\n", MILLISEC(TIME - ttt)); }
    std::chrono::system_clock::time_point tle = TIME;
#ifdef __MAI
    void safe_tle(int msec) { assert(MILLISEC(TIME - tle) < msec); }
#else
#define safe_tle(k) ;
#endif
}

#ifdef __MAI
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
#ifdef __VSCC
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#endif
namespace {
#define isvisiablechar(c) (0x21<=(c)&&(c)<=0x7E)
    class MaiScanner {
    public:
        template<typename T>
        void input_integer(T& var) {
            var = 0;
            T sign = 1;
            int cc = getchar_unlocked();
            for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
                if (cc == '-') sign = -1;
            for (; '0' <= cc&&cc <= '9'; cc = getchar_unlocked())
                var = (var << 3) + (var << 1) + cc - '0';
            var = var*sign;
        }
        inline int c() { return getchar_unlocked(); }
        inline MaiScanner& operator>>(int& var) {
            input_integer<int>(var);
            return *this;
        }
        inline MaiScanner& operator>>(long long& var) {
            input_integer<long long>(var);
            return *this;
        }
        inline MaiScanner& operator>>(string& var) {
            int cc = getchar_unlocked();
            for (; !isvisiablechar(cc); cc = getchar_unlocked());
            for (; isvisiablechar(cc); cc = getchar_unlocked())
                var.push_back(cc);
        }
    };
}
MaiScanner scanner;


// -----------------------------------------------------------------------
// ここから!
// -----------------------------------------------------------------------


class llmod {
public: const ll MOD = MD;
private:
    ll val;
    inline ll cut(ll v) const { return ((v%MOD) + MOD) % MOD; }
public:

    llmod() : MOD(MD), val(0) {}
    llmod(ll num, ll m = MD) : MOD(m), val(cut(num)) {}
    llmod(const llmod& lm, ll m) : MOD(m), val(lm.val) {}

    inline ll operator*() const { return val; }
    inline llmod& operator=(const llmod& lm) { val = lm.val; return *this; }
    inline llmod& operator=(ll v) { val = cut(v); return *this; }

    inline llmod& operator+=(ll v) { val = cut(val + v); return *this; }
    inline llmod& operator+=(const llmod& l) { val = cut(val + l.val); return *this; }
    inline llmod& operator-=(ll v) { val = cut(val - v); return *this; }
    inline llmod& operator-=(const llmod& l) { val = cut(val - l.val); return *this; }
    inline llmod& operator*=(ll v) { val = cut(val * v); return *this; }
    inline llmod& operator*=(const llmod& l) { val = cut(val * l.val); return *this; }
    inline llmod& operator++() { val = (val + 1) % MOD; return *this; }
    inline llmod operator++(int) { llmod t = *this; val = (val + 1) % MOD; return t; }
};
ostream& operator<<(ostream& os, const llmod& l) { os << *l; return os; }

inline llmod operator+(llmod t, const llmod& r) { return t += r; }
inline llmod operator-(llmod t, const llmod& r) { return t -= r; }
inline llmod operator*(llmod t, const llmod& r) { return t *= r; }



// MEMO : 逆元...powm(n,MD-2)
llmod pow(llmod x, ll p) {
    llmod y = 1;
    while (0 < p) {
        if (p % 2)
            y *= x;
        x *= x;
        p /= 2;
    }
    return y;
}

inline llmod& operator/=(llmod& l, const llmod& r) { return l *= pow(r, r.MOD - 2); }

template<typename T>
//typedef double T;
class matrix {
public:
    size_t height, width;
    valarray<T> data;
    matrix(size_t height, size_t width) :height(height), width(width), data(height*width) {}
    matrix(size_t height, size_t width, const valarray<T>& data) :height(height), width(width), data(data) {}

    inline T& operator()(size_t y, size_t x) { return data[y*width + x]; }
    inline T operator() (size_t y, size_t x) const { return data[y*width + x]; }
    inline T& at(size_t y, size_t x) { return data[y*width + x]; }
    inline T at(size_t y, size_t x) const { return data[y*width + x]; }
    inline void resize(size_t h, size_t w) { height = h; width = w; data.resize(h*w); }
    inline void fill(T val) { data = val; }
    matrix<T>& setDiag(T val) { for (size_t i = 0, en = min(width, height); i < en; ++i)at(i, i) = val; return *this; }
    inline bool issquare() const { return height == width; }

    void print(ostream& os) {
        os << "- - -" << endl; //  << setprecision(3)
        for (size_t y = 0; y < height; ++y) {
            for (size_t x = 0; x < width; ++x) {
                os << setw(7) << at(y, x) << ' ';
            }os << endl;
        }
    }
    template<typename MT> void copyto2d(MT& d2) {
        for (size_t i = 0; i < width*height; ++i) { d2[i / width][i%width] = data[i]; }
    }
    // mathematics
    matrix<T> pow(long long) const;
    double det() const; T tr();
    matrix<T>& transpose_self(); matrix<T> transpose() const;
    struct LU {
        size_t size;
        vector<int> pivot;
        vector<T> elem;
    };
};

// IO
template<typename T> inline ostream& operator << (ostream& os, matrix<T> mat) { mat.print(os); return os; }

// 掛け算
template<typename T> matrix<T> multiply(const matrix<T>& mat1, const matrix<T>& mat2) {
    assert(mat1.width == mat2.height);
    matrix<T> result(mat1.height, mat2.width);
    for (size_t i = 0, j, k; i < mat1.height; i++) {
        for (j = 0; j < mat2.width; j++) {
            for (k = 0; k < mat1.width; k++) {
                result(i, j) += mat1(i, k) * mat2(k, j);
            }
        }
    }
    return result;
}
template<typename T> valarray<T> multiply(const matrix<T>& mat1, const valarray<T>& vec2) {
    assert(mat1.width == vec2.size());
    valarray<T> result(mat1.height);
    for (size_t i = 0, j; i < mat1.height; i++) {
        for (j = 0; j < mat1.width; j++) {
            result[i] += mat1(i, j) * vec2[j];
        }
    }
    return result;
}
template<typename T> inline matrix<T>& operator*=(matrix<T>& mat1, matrix<T>& mat2) { mat1 = multiply(mat1, mat2); return mat1; }
template<typename T> inline matrix<T> operator*(matrix<T>& mat1, matrix<T>& mat2) { return multiply(mat1, mat2); }


// スカラー
template<typename T> inline matrix<T>& operator+=(matrix<T>& mat, T val) { mat.data += val; return mat; }
template<typename T> inline matrix<T>& operator*=(matrix<T>& mat, T val) { mat.data *= val; return mat; }
template<typename T> inline matrix<T>& operator/=(matrix<T>& mat, T val) { mat.data /= val; return mat; }
template<typename T> inline matrix<T>& operator^=(matrix<T>& mat, T val) { mat.data ^= val; return mat; }

// 行列
template<typename T> inline matrix<T>& operator+=(matrix<T>& mat1, matrix<T>& mat2) { mat1.data += mat2.data; return mat1; }
template<typename T> inline matrix<T> operator+(matrix<T>& mat1, matrix<T>& mat2) { return matrix<T>(mat1.height, mat1.width, mat1.data + mat2.data); }



// べきじょう
template<typename T> matrix<T> matrix<T>::pow(long long p) const {
    assert(issquare());
    matrix<T> a = *this;
    matrix<T> b(height, height); b.setDiag(1);

    while (0 < p) {
        if (p % 2) {
            b *= a;
        }
        a *= a; p /= 2;
    }
    return b;
}



int main() {
    ll n;
    cin >> n;

    matrix<llmod> matz(6, 6, valarray<llmod>{
        3,0,0,1,0,1,
        0,3,0,1,1,1,
        0,0,3,0,1,1,
        1,1,0,3,1,1,
        0,1,1,1,3,1,
        1,1,1,1,1,3
    });

    matrix<llmod> matAp = matz.pow(n - 1);

    valarray<llmod> stat = { 1,1,1,1,1,1 };

    stat = multiply(matAp, stat);

    cout << *(stat.sum()) << endl;


    return 0;
}
0