結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | FF256grhy |
提出日時 | 2017-07-07 02:00:02 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 40 ms / 5,000 ms |
コード長 | 3,025 bytes |
コンパイル時間 | 1,432 ms |
コンパイル使用メモリ | 163,840 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-06 04:04:19 |
合計ジャッジ時間 | 3,936 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(int i = (l) ; i < (r); i++) #define incII(i, l, r) for(int i = (l) ; i <= (r); i++) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--) #define decII(i, l, r) for(int i = (r) ; i >= (l); i--) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define UB upper_bound #define LB lower_bound #define PQ priority_queue #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it) #define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it) template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } // ---- ---- template<int N> void mat_prod(LL a[N][N], LL b[N][N], LL c[N][N], LL MOD) { // a = b * c; LL d[N][N]; inc(i, N) { inc(j, N) { d[i][j] = 0; } } inc(i, N) { inc(j, N) { inc(k, N) { (d[i][j] += b[i][k] * c[k][j]) %= MOD; } } } inc(i, N) { inc(j, N) { a[i][j] = d[i][j]; } } return; } template<int N> void mat_exp(LL a[N][N], LL b[N][N], LL c, LL MOD) { // a = b ^ c; LL t[60][N][N]; inc(i, N) { inc(j, N) { t[0][i][j] = b[i][j]; } } inc(i, 60 - 1) { mat_prod<N>(t[i + 1], t[i], t[i], MOD); } inc(i, N) { inc(j, N) { a[i][j] = 0; } } inc(i, N) { a[i][i] = 1; } inc(i, 60) { if((c >> i) % 2 == 1) { mat_prod<N>(a, a, t[i], MOD); } } return; } // ---- LL n, k, a[10000], MOD = 1e9 + 7, x[31][31], v[31][31]; int main() { cin >> n >> k; inc(i, n) { cin >> a[i]; } if(k <= 1000000) { queue<LL> q; LL s = 0; inc(i, n) { q.push(a[i]); s += a[i]; } LL ss = s * 2; inc(i, k - 1 - n) { q.push(s); LL e = q.front(); q.pop(); (s += s + MOD - e) %= MOD; (ss += s) %= MOD; } cout << s << " " << ss << endl; } else if(n <= 30) { LL s = 0; inc(i, n) { s += a[i]; } inc(i, n) { v[i][0] = a[i]; } v[30][0] = s; inc(i, n - 1) { x[i][i + 1] = 1; } inc(i, n) { x[n - 1][i] = x[30][i] = 1; } x[30][30] = 1; mat_exp (x, x, k - n, MOD); mat_prod(x, x, v, MOD); cout << x[n - 1][0] << " " << x[30][0] << endl; } else { return -1; } return 0; }