結果

問題 No.368 LCM of K-products
ユーザー te-shte-sh
提出日時 2017-07-19 10:26:25
言語 D
(dmd 2.109.1)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 2,998 bytes
コンパイル時間 448 ms
コンパイル使用メモリ 145,732 KB
最終ジャッジ日時 2024-11-14 20:07:35
合計ジャッジ時間 933 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/internal/write.d(143): Error: cannot implicitly convert expression `obj` of type `const(FactorRing!(1000000007, true))` to `int`
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/write.d(1239): Error: template instance `std.format.internal.write.formatValueImpl!(LockingTextWriter, FactorRing!(1000000007, true), char)` error instantiating
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/format/write.d(632):        instantiated from here: `formatValue!(LockingTextWriter, FactorRing!(1000000007, true), char)`
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/stdio.d(1759):        instantiated from here: `formattedWrite!(LockingTextWriter, char, FactorRing!(1000000007, true))`
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/stdio.d(4277):        instantiated from here: `write!(FactorRing!(1000000007, true), char)`
Main.d(35):        instantiated from here: `writeln!(FactorRing!(1000000007, true))`

ソースコード

diff #

import std.algorithm, std.conv, std.range, std.stdio, std.string;

const mod = 10 ^^ 9 + 7;
alias FactorRing!(mod, true) mint;

void main()
{
  auto rd = readln.split.to!(size_t[]), n = rd[0], k = rd[1];
  auto a = readln.split.to!(int[]);

  auto p = primes(a.maxElement.nsqrt+1);
  auto f = new int[int][](n);
  foreach (i; 0..n) {
    auto ai = a[i];
    while (ai > 1) {
      auto fi = ai.factor(p);
      ++f[i][fi];
      ai /= fi;
    }
  }

  int[] q;
  foreach (fi; f) q ~= fi.keys;
  q = q.sort().uniq.array;

  auto r = mint(1);
  foreach (qi; q) {
    int[] s;
    foreach (i; 0..n)
      if (qi in f[i]) s ~= f[i][qi];
    s.sort!"a > b";
    r *= repeatedSquare(mint(qi), s.take(k).sum);
  }

  writeln(r);
}

pure T[] primes(T)(T n)
{
  import std.algorithm, std.bitmanip, std.conv, std.range;

  auto sieve = BitArray();
  sieve.length((n + 1) / 2);
  sieve = ~sieve;

  foreach (p; 1..((nsqrt(n) - 1) / 2 + 1))
    if (sieve[p])
      for (auto q = p * 3 + 1; q < (n + 1) / 2; q += p * 2 + 1)
        sieve[q] = false;

  auto r = sieve.bitsSet.map!(to!T).map!("a * 2 + 1").array;
  r[0] = 2;

  return r;
}

pure T factor(T)(T n, const T[] pi)
{
  auto ma = nsqrt(n) + 1;
  foreach (p; pi)
    if (p > ma) return n;
    else if (n % p == 0) return p;
  return n;
}

pure T nsqrt(T)(T n)
{
  import std.algorithm, std.conv, std.range, core.bitop;
  if (n <= 1) return n;
  T m = 1 << (n.bsr / 2 + 1);
  return iota(1, m).map!"a * a".assumeSorted!"a <= b".lowerBound(n).length.to!T;
}

struct FactorRing(int m, bool pos = false)
{
  long v;

  @property int toInt() { return v.to!int; }
  alias toInt this;

  this(T)(T _v) { v = mod(_v); }

  ref FactorRing!(m, pos) opAssign(int _v)
  {
    v = mod(_v);
    return this;
  }

  pure auto mod(long _v) const
  {
    static if (pos) return _v % m;
    else return (_v % m + m) % m;
  }

  pure auto opBinary(string op: "+")(long rhs) const { return FactorRing!(m, pos)(v + rhs); }
  pure auto opBinary(string op: "-")(long rhs) const { return FactorRing!(m, pos)(v - rhs); }
  pure auto opBinary(string op: "*")(long rhs) const { return FactorRing!(m, pos)(v * rhs); }

  pure auto opBinary(string op)(FactorRing!(m, pos) rhs) const
    if (op == "+" || op == "-" || op == "*") { return opBinary!op(rhs.v); }

  auto opOpAssign(string op: "+")(long rhs) { v = mod(v + rhs); }
  auto opOpAssign(string op: "-")(long rhs) { v = mod(v - rhs); }
  auto opOpAssign(string op: "*")(long rhs) { v = mod(v * rhs); }

  auto opOpAssign(string op)(FactorRing!(m, pos) rhs)
    if (op == "+" || op == "-" || op == "*") { return opOpAssign!op(rhs.v); }
}

T repeatedSquare(T, alias pred = "a * b", U)(T a, U n)
{
  return repeatedSquare(a, n, T(1));
}

T repeatedSquare(T, alias pred = "a * b", U)(T a, U n, T init)
{
  import std.functional;
  alias predFun = binaryFun!pred;

  if (n == 0) return init;

  auto r = init;
  while (n > 0) {
    if ((n & 1) == 1)
      r = predFun(r, a);
    a = predFun(a, a);
    n >>= 1;
  }

  return r;
}
0