結果

問題 No.545 ママの大事な二人の子供
ユーザー kou6839kou6839
提出日時 2017-07-21 23:36:01
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 40 ms / 2,000 ms
コード長 6,346 bytes
コンパイル時間 1,241 ms
コンパイル使用メモリ 126,312 KB
実行使用メモリ 6,656 KB
最終ジャッジ日時 2024-10-09 04:28:24
合計ジャッジ時間 2,680 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 1 ms
5,248 KB
testcase_06 AC 1 ms
5,248 KB
testcase_07 AC 1 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 1 ms
5,248 KB
testcase_12 AC 1 ms
5,248 KB
testcase_13 AC 1 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 1 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 AC 2 ms
5,248 KB
testcase_19 AC 3 ms
5,248 KB
testcase_20 AC 5 ms
5,248 KB
testcase_21 AC 2 ms
5,248 KB
testcase_22 AC 18 ms
5,248 KB
testcase_23 AC 40 ms
6,528 KB
testcase_24 AC 15 ms
5,248 KB
testcase_25 AC 34 ms
6,528 KB
testcase_26 AC 37 ms
6,272 KB
testcase_27 AC 26 ms
6,656 KB
testcase_28 AC 40 ms
6,528 KB
testcase_29 AC 31 ms
6,528 KB
testcase_30 AC 37 ms
6,528 KB
testcase_31 AC 33 ms
6,528 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <fstream>
#define _USE_MATH_DEFINES
#include <math.h>
#include <unordered_set>
using namespace std;
inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }
template<class T> inline T sqr(T x) { return x*x; }
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<long long int> vll;
typedef vector<string> vs;
typedef pair<int, int> pii;
typedef long long ll;
typedef unsigned long long ull;
//repetition
//------------------------------------------
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define rep(i,n) FOR(i,0,n)
#define P(p) cout<<(p)<<endl;
#define VEC_2D(a,b) vector<vector<int> >(a, vector<int>(b, 0))
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define pb push_back
#define mp make_pair
#define INF (1100000000)
#define SZ(a) int((a).size())
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
#define MOD 1000000007LL
#define FSP(a) cout << fixed << setprecision(a)
ll gcd(ll x, ll y) {
if (y == 0) return x;
else return gcd(y, x%y);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
bool is_prime(int n) {
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return n != 1;
}
map<int, int> prime_factor(int n) {
map<int, int> res;
for (int i = 2; i * i <= n; i++) {
while (n % i == 0) {
++res[i];
n /= i;
}
}
if (n != 1) res[n] = 1;
return res;
}
int extgcd(int a, int b, int& x, int& y) {//
int d = a;
if (b != 0) {
d = extgcd(b, a%b, y, x);
y -= (a / b)*x;
}
else {
x = 1; y = 0;
}
return d;
}
ll mod_pow(ll x, ll n, ll mod) {
if (n == 0) return 1;
ll res = mod_pow(x * x % mod, n / 2, mod);
if (n & 1) res = res * x % mod;
return res;
}
vector<string> split(const string &str, char delim) {
vector<string> res;
size_t current = 0, found;
while ((found = str.find_first_of(delim, current)) != string::npos) {
res.push_back(string(str, current, found - current));
current = found + 1;
}
res.push_back(string(str, current, str.size() - current));
return res;
}
bool is_kadomatsu(int a, int b, int c) {
if (a == b || a == c || b == c)return false;
if (a > b && c > b) return true;
if (a < b && c < b)return true;
return false;
}
struct UF {
int n;
vi d;
UF() {}
UF(int n) :n(n), d(n, -1) {}
int root(int v) {
if (d[v] < 0) return v;
return d[v] = root(d[v]);
}
bool same(int a, int b) {
if (root(a) != root(b)) return false;
else return true;
}
bool unite(int x, int y) {
x = root(x); y = root(y);
if (x == y) return false;
if (size(x) < size(y)) swap(x, y);
d[x] += d[y];
d[y] = x;
return true;
}
int size(int v) { return -d[root(v)]; }
};
vector<int> divisor(int n) {
if (n == 1) return{};
vi res;
for (int i = 1; i*i <= n; i++) {
if (n%i == 0) {
res.emplace_back(i);
if (i != 1 && i != n / i)res.emplace_back(n / i);
}
}
return res;
}
struct Bellmanford {
int n;
struct edge {
int from, to, cost;
};
vector<edge> E;
vi d;
Bellmanford(int n) :n(n), d(n) {
E.resize(n);
}
void add_edge(int x, int y, int cost) {
edge e;
e.from = x; e.to = y; e.cost = cost;
E.push_back(e);
}
void shortest_path(int s) {
rep(i, n)d[i] = INF;
d[s] = 0;
while (true) {
bool update = false;
for (auto e : E) {
if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) {
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if (!update) break;
}
}
};
struct Dijkstra {
int n;
struct edge {
int to, cost;
};
vector<vector<edge>> G;
vi d;
Dijkstra(int n) :n(n), d(n) {
G.resize(n);
}
void add_edge(int x, int y, int cost) {
edge e;
e.to = y; e.cost = cost;
G[x].push_back(e);
}
void shortest_path(int s) {
rep(i, n)d[i] = INF;
d[s] = 0;
priority_queue<pii, vector<pii>, greater<pii>> que;
que.push(make_pair(0, s));
while (!que.empty()) {
pii p = que.top(); que.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (auto e : G[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(make_pair(d[e.to], e.to));
}
}
}
}
};
struct Segmenttree {
int n;
vector<pair<ll, int>> dat;
Segmenttree() {}
void init(ll n_) {
n = 1;
while (n < n_) n *= 2;
dat.resize(2 * n - 1);
rep(i, 2 * n - 1)dat[i] = pair<ll, int>(-INF, -INF);
}
void update(int idx, ll val) {
idx += n - 1;
dat[idx] = make_pair(val, -(idx - n + 1));
while (idx > 0) {
idx = (idx - 1) / 2;
dat[idx] = max(dat[idx * 2 + 1], dat[idx * 2 + 2]);
}
}
pair<ll, int> query(int a, int b) {
return query_seg(a, b, 0, 0, n);
}
pair<ll, int> query_seg(int a, int b, int k, int l, int r) {
if (r <= a || b <= l) return pair<ll, int>(-INF, -INF);
if (a <= l && r <= b)return dat[k];
else {
return max(query_seg(a, b, k * 2 + 1, l, (l + r) / 2), query_seg(a, b, k * 2 + 2, (l + r) / 2, r));
}
}
};
//-------------------------------------------------------------
int main() {
int N;
cin >> N;
vll A(N), B(N);
rep(i, N)cin >> A[i] >> B[i];
if (N == 1) {
P(min(A[0], B[0]));
return 0;
}
int L = N / 2;
int R = N - L;
set<ll> P;
for (int mask = 0; mask < (1 << L); mask++) {
ll dif = 0;
rep(i, L) {
if (mask&(1 << i)) {
dif += A[i];
}
else {
dif -= B[i];
}
}
P.insert(dif);
}
ll mi = 1LL << 50, ret = 0;
for (int mask = 0; mask < (1 << R); mask++) {
ll dif = 0;
rep(i, R) {
if (mask&(1 << i)) {
dif += A[i + L];
}
else {
dif -= B[i + L];
}
}
auto it = P.lower_bound(-dif);
if (it != P.begin()) {
auto it2 = it;
it2--;
mi = min(mi, abs(dif + *it2));
}
if (it != P.end()){
mi = min(mi, abs(dif + *it));
auto it3 = it;
it3++;
if (it3 != P.end()) mi = min(mi, abs(dif + *it3));
}
}
P(mi);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0