結果
問題 | No.545 ママの大事な二人の子供 |
ユーザー | kou6839 |
提出日時 | 2017-07-21 23:36:01 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 40 ms / 2,000 ms |
コード長 | 6,346 bytes |
コンパイル時間 | 1,241 ms |
コンパイル使用メモリ | 126,312 KB |
実行使用メモリ | 6,656 KB |
最終ジャッジ日時 | 2024-10-09 04:28:24 |
合計ジャッジ時間 | 2,680 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 1 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 3 ms
5,248 KB |
testcase_20 | AC | 5 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 18 ms
5,248 KB |
testcase_23 | AC | 40 ms
6,528 KB |
testcase_24 | AC | 15 ms
5,248 KB |
testcase_25 | AC | 34 ms
6,528 KB |
testcase_26 | AC | 37 ms
6,272 KB |
testcase_27 | AC | 26 ms
6,656 KB |
testcase_28 | AC | 40 ms
6,528 KB |
testcase_29 | AC | 31 ms
6,528 KB |
testcase_30 | AC | 37 ms
6,528 KB |
testcase_31 | AC | 33 ms
6,528 KB |
ソースコード
#include <vector>#include <list>#include <map>#include <set>#include <queue>#include <deque>#include <stack>#include <bitset>#include <algorithm>#include <functional>#include <numeric>#include <utility>#include <sstream>#include <iostream>#include <iomanip>#include <cstdio>#include <cmath>#include <cstdlib>#include <cctype>#include <string>#include <cstring>#include <ctime>#include <fstream>#define _USE_MATH_DEFINES#include <math.h>#include <unordered_set>using namespace std;inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }template<class T> inline T sqr(T x) { return x*x; }typedef vector<int> vi;typedef vector<vi> vvi;typedef vector<long long int> vll;typedef vector<string> vs;typedef pair<int, int> pii;typedef long long ll;typedef unsigned long long ull;//repetition//------------------------------------------#define FOR(i,a,b) for(int i=(a);i<(b);++i)#define rep(i,n) FOR(i,0,n)#define P(p) cout<<(p)<<endl;#define VEC_2D(a,b) vector<vector<int> >(a, vector<int>(b, 0))#define ALL(a) (a).begin(),(a).end()#define RALL(a) (a).rbegin(), (a).rend()#define pb push_back#define mp make_pair#define INF (1100000000)#define SZ(a) int((a).size())#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)#define EXIST(s,e) ((s).find(e)!=(s).end())#define SORT(c) sort((c).begin(),(c).end())#define MOD 1000000007LL#define FSP(a) cout << fixed << setprecision(a)ll gcd(ll x, ll y) {if (y == 0) return x;else return gcd(y, x%y);}ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}bool is_prime(int n) {for (int i = 2; i * i <= n; i++) {if (n % i == 0) return false;}return n != 1;}map<int, int> prime_factor(int n) {map<int, int> res;for (int i = 2; i * i <= n; i++) {while (n % i == 0) {++res[i];n /= i;}}if (n != 1) res[n] = 1;return res;}int extgcd(int a, int b, int& x, int& y) {//int d = a;if (b != 0) {d = extgcd(b, a%b, y, x);y -= (a / b)*x;}else {x = 1; y = 0;}return d;}ll mod_pow(ll x, ll n, ll mod) {if (n == 0) return 1;ll res = mod_pow(x * x % mod, n / 2, mod);if (n & 1) res = res * x % mod;return res;}vector<string> split(const string &str, char delim) {vector<string> res;size_t current = 0, found;while ((found = str.find_first_of(delim, current)) != string::npos) {res.push_back(string(str, current, found - current));current = found + 1;}res.push_back(string(str, current, str.size() - current));return res;}bool is_kadomatsu(int a, int b, int c) {if (a == b || a == c || b == c)return false;if (a > b && c > b) return true;if (a < b && c < b)return true;return false;}struct UF {int n;vi d;UF() {}UF(int n) :n(n), d(n, -1) {}int root(int v) {if (d[v] < 0) return v;return d[v] = root(d[v]);}bool same(int a, int b) {if (root(a) != root(b)) return false;else return true;}bool unite(int x, int y) {x = root(x); y = root(y);if (x == y) return false;if (size(x) < size(y)) swap(x, y);d[x] += d[y];d[y] = x;return true;}int size(int v) { return -d[root(v)]; }};vector<int> divisor(int n) {if (n == 1) return{};vi res;for (int i = 1; i*i <= n; i++) {if (n%i == 0) {res.emplace_back(i);if (i != 1 && i != n / i)res.emplace_back(n / i);}}return res;}struct Bellmanford {int n;struct edge {int from, to, cost;};vector<edge> E;vi d;Bellmanford(int n) :n(n), d(n) {E.resize(n);}void add_edge(int x, int y, int cost) {edge e;e.from = x; e.to = y; e.cost = cost;E.push_back(e);}void shortest_path(int s) {rep(i, n)d[i] = INF;d[s] = 0;while (true) {bool update = false;for (auto e : E) {if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) {d[e.to] = d[e.from] + e.cost;update = true;}}if (!update) break;}}};struct Dijkstra {int n;struct edge {int to, cost;};vector<vector<edge>> G;vi d;Dijkstra(int n) :n(n), d(n) {G.resize(n);}void add_edge(int x, int y, int cost) {edge e;e.to = y; e.cost = cost;G[x].push_back(e);}void shortest_path(int s) {rep(i, n)d[i] = INF;d[s] = 0;priority_queue<pii, vector<pii>, greater<pii>> que;que.push(make_pair(0, s));while (!que.empty()) {pii p = que.top(); que.pop();int v = p.second;if (d[v] < p.first) continue;for (auto e : G[v]) {if (d[e.to] > d[v] + e.cost) {d[e.to] = d[v] + e.cost;que.push(make_pair(d[e.to], e.to));}}}}};struct Segmenttree {int n;vector<pair<ll, int>> dat;Segmenttree() {}void init(ll n_) {n = 1;while (n < n_) n *= 2;dat.resize(2 * n - 1);rep(i, 2 * n - 1)dat[i] = pair<ll, int>(-INF, -INF);}void update(int idx, ll val) {idx += n - 1;dat[idx] = make_pair(val, -(idx - n + 1));while (idx > 0) {idx = (idx - 1) / 2;dat[idx] = max(dat[idx * 2 + 1], dat[idx * 2 + 2]);}}pair<ll, int> query(int a, int b) {return query_seg(a, b, 0, 0, n);}pair<ll, int> query_seg(int a, int b, int k, int l, int r) {if (r <= a || b <= l) return pair<ll, int>(-INF, -INF);if (a <= l && r <= b)return dat[k];else {return max(query_seg(a, b, k * 2 + 1, l, (l + r) / 2), query_seg(a, b, k * 2 + 2, (l + r) / 2, r));}}};//-------------------------------------------------------------int main() {int N;cin >> N;vll A(N), B(N);rep(i, N)cin >> A[i] >> B[i];if (N == 1) {P(min(A[0], B[0]));return 0;}int L = N / 2;int R = N - L;set<ll> P;for (int mask = 0; mask < (1 << L); mask++) {ll dif = 0;rep(i, L) {if (mask&(1 << i)) {dif += A[i];}else {dif -= B[i];}}P.insert(dif);}ll mi = 1LL << 50, ret = 0;for (int mask = 0; mask < (1 << R); mask++) {ll dif = 0;rep(i, R) {if (mask&(1 << i)) {dif += A[i + L];}else {dif -= B[i + L];}}auto it = P.lower_bound(-dif);if (it != P.begin()) {auto it2 = it;it2--;mi = min(mi, abs(dif + *it2));}if (it != P.end()){mi = min(mi, abs(dif + *it));auto it3 = it;it3++;if (it3 != P.end()) mi = min(mi, abs(dif + *it3));}}P(mi);return 0;}