結果
問題 | No.529 帰省ラッシュ |
ユーザー | tansunogon |
提出日時 | 2017-08-01 20:06:54 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 241 ms / 4,500 ms |
コード長 | 13,602 bytes |
コンパイル時間 | 1,656 ms |
コンパイル使用メモリ | 87,480 KB |
実行使用メモリ | 28,228 KB |
最終ジャッジ日時 | 2024-12-16 07:27:58 |
合計ジャッジ時間 | 5,642 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 4 ms
5,248 KB |
testcase_05 | AC | 4 ms
5,248 KB |
testcase_06 | AC | 4 ms
5,248 KB |
testcase_07 | AC | 4 ms
5,248 KB |
testcase_08 | AC | 156 ms
15,116 KB |
testcase_09 | AC | 158 ms
15,636 KB |
testcase_10 | AC | 191 ms
19,660 KB |
testcase_11 | AC | 195 ms
19,768 KB |
testcase_12 | AC | 132 ms
14,036 KB |
testcase_13 | AC | 184 ms
28,228 KB |
testcase_14 | AC | 151 ms
19,072 KB |
testcase_15 | AC | 239 ms
19,312 KB |
testcase_16 | AC | 241 ms
19,444 KB |
testcase_17 | AC | 202 ms
25,652 KB |
testcase_18 | AC | 202 ms
26,064 KB |
testcase_19 | AC | 200 ms
22,736 KB |
コンパイルメッセージ
In member function 'void SegTree::update(int, int)', inlined from 'int Solver::query2(int, int)' at main.cpp:674:36: main.cpp:50:71: warning: 'group_index_max' may be used uninitialized [-Wmaybe-uninitialized] 50 | int value2 = data_[child_begin + (child_index ^ 1)]; | ~~~~~~~~~~~~~^~~~ main.cpp: In member function 'int Solver::query2(int, int)': main.cpp:611:21: note: 'group_index_max' was declared here 611 | int group_index_max = -1; | ^~~~~~~~~~~~~~~
ソースコード
#include <stdio.h> #include <string.h> #include <assert.h> #include <vector> #include <algorithm> #include <queue> #include <functional> class SegTree { public: // in the case where n = 3, // // [--3--] // [0] [1] [2] std::vector<int> data_; std::vector<int> index_; const int n_; SegTree(size_t n) : n_(n) { int data_size = 0; while (n > 0) { data_size += n; n /= 2; } data_ = std::vector<int>(data_size, -1); index_ = std::vector<int>(data_size); for (int i = 0; i < n_; ++i) { index_[i] = i; } } void update(int i, int value) { assert(i >= 0 && i < n_); data_[i] = value; int index = i; int child_begin = 0; int child_index = i; int parent_begin = n_; int parent_size = n_ / 2; int parent_index = i / 2; while (parent_index < parent_size) { int value2 = data_[child_begin + (child_index ^ 1)]; if (value > value2) { data_[parent_begin + parent_index] = value; index_[parent_begin + parent_index] = index; } else { data_[parent_begin + parent_index] = value = value2; index_[parent_begin + parent_index] = index = index_[child_begin + (child_index ^ 1)]; } child_begin = parent_begin; child_index = parent_index; parent_begin += parent_size; parent_size /= 2; parent_index /= 2; } } // max [0, i] int getmax(int i, int* index) const { assert(i < n_); int ret_max = -1; int index_begin = 0; int size = n_; while (1) { if ((i & 1) == 0) { if (ret_max < data_[index_begin + i]) { ret_max = data_[index_begin + i]; *index = index_[index_begin + i]; } if (i == 0) { return ret_max; } --i; } index_begin += size; size /= 2; i /= 2; } } // max [i, j] int getmax(int i, int j, int* index) const { assert(0 <= i && i <= j && j < n_); int ret_max = -1; int index_begin = 0; int size = n_; while (1) { if (i & 1) { if (ret_max < data_[index_begin + i]) { ret_max = data_[index_begin + i]; *index = index_[index_begin + i]; } ++i; } if ((j & 1) == 0) { if (ret_max < data_[index_begin + j]) { ret_max = data_[index_begin + j]; *index = index_[index_begin + j]; } --j; } if (i > j) { return ret_max; } index_begin += size; size /= 2; i /= 2; j /= 2; } } }; class Graph { private: std::vector<int> edge_data_; std::vector<int*> edge_; std::vector<int> length_; public: // V : num of vertices // E : num of edges // vertex[i] = (A[i], B[i]) Graph(int V, int E, const int A[], const int B[]) { edge_data_ = std::vector<int>(E * 2); edge_ = std::vector<int*>(V); length_ = std::vector<int>(V); for (int i = 0; i < E; ++i) { ++length_[A[i]]; ++length_[B[i]]; } edge_[0] = edge_data_.data(); for (int i = 0; i < V - 1; ++i) { edge_[i + 1] = edge_[i] + length_[i]; } memset(length_.data(), 0, V * sizeof(int)); for (int i = 0; i < E; ++i) { edge_[A[i]][length_[A[i]]++] = B[i]; edge_[B[i]][length_[B[i]]++] = A[i]; } } // returns num of Vertices inline int getV() const { return length_.size(); } // returns num of edges inline int getE() const { return edge_data_.size() / 2; } inline int getLength(int index) const { return length_[index]; } inline int getEdge(int nodeIndex, int index) const { return edge_[nodeIndex][index]; } void print() const { for (int i = 0; i < getV(); ++i) { printf("%d : ", i); for (int j = 0; j < getLength(i); ++j) { printf("%d ", getEdge(i, j)); } printf("\n"); } } }; class BiconnectGraph_ { public: Graph* g_; std::vector<int>* index_; BiconnectGraph_(Graph* g) { Builder builder; *this = builder.DecomposeToBiconnectedComponents(g); } protected: void close() { delete g_; delete index_; } private: BiconnectGraph_(Graph* g, std::vector<int>* index) :g_(g), index_(index) {} class Builder { public: Graph* g; std::vector<int> ord; std::vector<int> low; std::vector<bool> visited; int k; std::vector<int> A; std::vector<int> B; std::vector<int>* newIndex; // 二重辺連結成分分解 // use lowlink http://hos.ac/slides/20110504_graph.pdf BiconnectGraph_ DecomposeToBiconnectedComponents(Graph* g) { this->g = g; ord = std::vector<int>(g->getV()); low = std::vector<int>(g->getV()); visited = std::vector<bool>(g->getV()); k = 0; A = std::vector<int>(g->getE()); B = std::vector<int>(g->getE()); newIndex = new std::vector<int>(g->getV()); // update ord, low dfs(0); // update k, A, B, newIndex visited.assign(g->getV(), false); k = 0; (*newIndex)[0] = 0; dfs_(0); //print(); return BiconnectGraph_( new Graph(k + 1, k, A.data(), B.data()), newIndex); } // Lowlink void dfs(int u, int prev = -1) { visited[u] = true; low[u] = ord[u] = k; ++k; for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (!visited[v]) { dfs(v, u); low[u] = std::min(low[u], low[v]); } else if (v != prev) { low[u] = std::min(low[u], ord[v]); } } } // create new graph info // change k, A, B, newIndex void dfs_(int u) { visited[u] = true; for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (!visited[v]) { assert(ord[u] < ord[v]); if (ord[u] < low[v]) { // (u, v) is a bridge A[k] = (*newIndex)[u]; B[k] = (*newIndex)[v] = k + 1; k = k + 1; } else { (*newIndex)[v] = (*newIndex)[u]; } dfs_(v); } } } void print() const { printf("| ord | low | visited | newIndex |\n"); for (int i = 0; i < g->getV(); ++i) { printf("|%4d |%4d | %3d | %8d |\n", ord[i], low[i], visited[i], (*newIndex)[i]); } } }; }; class BiconnectGraph : private BiconnectGraph_ { public: BiconnectGraph(Graph* g) : BiconnectGraph_(g) {} ~BiconnectGraph() { close(); } inline Graph& graph() const { return *g_; } inline std::vector<int>& index() const { return *index_; } void print() { graph().print(); printf("i: reindex\n"); for (int i = 0; i < index().size(); ++i) { printf("%d : %d\n", i, index().at(i)); } } }; class HLDecompositionGraph { public: std::vector<int> index_to_groupid; std::vector<int> index_to_groupindex; std::vector<int> groupid_to_parent_groupid; std::vector<int> groupid_to_parent_groupindex; std::vector<int> groupid_to_size; int group_count; HLDecompositionGraph(BiconnectGraph* biGraph) : index_to_groupid(biGraph->index().size()), index_to_groupindex(biGraph->index().size()), groupid_to_parent_groupid(biGraph->graph().getV()), groupid_to_parent_groupindex(biGraph->graph().getV()), groupid_to_size(biGraph->graph().getV()) { Builder builder; builder.HLDecompose(this, biGraph); } void print() { printf(" i: gid gindex\n"); for (int i = 0; i < index_to_groupid.size(); ++i) { printf("%2d: %5d %5d\n", i, index_to_groupid[i], index_to_groupindex[i]); } printf("gid: p_gid p_gindex\n"); for (int i = 0; i < groupid_to_parent_groupid.size(); ++i) { printf("%2d: %5d %5d\n", i, groupid_to_parent_groupid[i], groupid_to_parent_groupindex[i]); } } class Builder { public: HLDecompositionGraph* decomposision; Graph* g; BiconnectGraph* bg; // last group id int k; std::vector<int> depth_; std::vector<int> pre_index_to_groupid; std::vector<int> pre_index_to_groupindex; void HLDecompose(HLDecompositionGraph* decomposition, BiconnectGraph* g) { this->decomposision = decomposition; this->g = &g->graph(); bg = g; k = 0; depth_ = std::vector<int>(g->graph().getV()); pre_index_to_groupid = std::vector<int>(g->graph().getV()); pre_index_to_groupindex = std::vector<int>(g->graph().getV()); // find deepest node //NodeInfo deepest_node = dfs_find_deepest(0); // update depth_ dfs_depth(0); // HL decomposition dfs_hl_decomposition(0, 0, 0); // pre_index to decomposition.index for (int i = 0; i < g->index().size(); ++i) { decomposision->index_to_groupid[i] = pre_index_to_groupid[g->index()[i]]; decomposision->index_to_groupindex[i] = pre_index_to_groupindex[g->index()[i]]; } decomposision->group_count = k + 1; } struct NodeInfo { int depth; int index; }; NodeInfo dfs_find_deepest(int u, int prev = -1) { NodeInfo info = {0, u}; for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (v != prev) { NodeInfo leafInfo = dfs_find_deepest(v, u); if (leafInfo.depth > info.depth) { info = leafInfo; } } } ++info.depth; return info; } // update depth_ int dfs_depth(int u, int prev = -1) { int depth = 0; for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (v != prev) { depth = std::max(depth, dfs_depth(v, u)); } } depth_[u] = depth; return depth + 1; } void dfs_hl_decomposition(int u, int group_id, int group_index, int prev = -1) { pre_index_to_groupid[u] = group_id; pre_index_to_groupindex[u] = group_index; ++decomposision->groupid_to_size[group_id]; int max_depth = -1; int max_depth_index = -1; for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (v != prev) { if (depth_[v] > max_depth) { max_depth = depth_[v]; max_depth_index = v; } } } for (int i = 0; i < g->getLength(u); ++i) { int v = g->getEdge(u, i); if (v != prev) { if (v == max_depth_index) { // Heavy dfs_hl_decomposition(v, group_id, group_index + 1, u); } else { // Light ++k; decomposision->groupid_to_parent_groupid[k] = group_id; decomposision->groupid_to_parent_groupindex[k] = group_index; dfs_hl_decomposition(v, k, 0, u); } } } } }; }; class Solver { public: using QueType = std::priority_queue<int>; HLDecompositionGraph* g; std::vector<std::vector<QueType>>* que_list; std::vector<SegTree>* seg_list; // V : num of vertices // E : num of edges // vertex[i] = (A[i], B[i]) Solver(int V, int E, const int A[], const int B[]) { // initialize HLDecompositionGraph Graph original_graph(V, E, A, B); //original_graph.print(); BiconnectGraph biconnect_graph(&original_graph); //biconnect_graph.print(); g = new HLDecompositionGraph(&biconnect_graph); //g->print(); // initialize que_list que_list = new std::vector<std::vector<QueType>>(g->group_count); for (int i = 0; i < g->group_count; ++i) { (*que_list)[i] = std::vector<QueType>(g->groupid_to_size[i]); } // initialize seq_list seg_list = new std::vector<SegTree>(); seg_list->reserve(g->group_count); for (int i = 0; i < g->group_count; ++i) { seg_list->emplace_back(g->groupid_to_size[i]); } } void query1(int u, int w) { int group_id = g->index_to_groupid[u]; int group_index = g->index_to_groupindex[u]; (*que_list)[group_id][group_index].push(w); auto& seg = (*seg_list)[group_id]; if (w > seg.data_[group_index]) seg.update(group_index, w); } int query2(int s, int t) { int group_id_0 = g->index_to_groupid[s]; int group_index_0 = g->index_to_groupindex[s]; int group_id_1 = g->index_to_groupid[t]; int group_index_1 = g->index_to_groupindex[t]; int max_value = -1; int group_id_max = -1; int group_index_max = -1; while (1) { if (group_id_0 == group_id_1) { if (group_index_0 > group_index_1) { std::swap(group_index_0, group_index_1); } int index; int value = (*seg_list)[group_id_0] .getmax(group_index_0, group_index_1, &index); if (value > max_value) { max_value = value; group_id_max = group_id_0; group_index_max = index; } break; } if (group_id_0 < group_id_1) { std::swap(group_id_0, group_id_1); std::swap(group_index_0, group_index_1); } assert(group_id_0 > group_id_1); { int index; int value = (*seg_list)[group_id_0] .getmax(group_index_0, &index); if (value > max_value) { max_value = value; group_id_max = group_id_0; group_index_max = index; } group_index_0 = g->groupid_to_parent_groupindex[group_id_0]; group_id_0 = g->groupid_to_parent_groupid[group_id_0]; } } if (max_value > 0) { assert(group_id_max != -1); assert(group_index_max != -1); // update que auto& que = (*que_list)[group_id_max][group_index_max]; assert(que.top() == max_value); que.pop(); int value; if (que.empty()) { value = -1; } else { value = que.top(); } // update segtree (*seg_list)[group_id_max].update(group_index_max, value); } return max_value; } ~Solver() { delete g; delete que_list; delete seg_list; } }; int N, M, Q; int A[200000], B[200000]; int main() { scanf("%d %d %d", &N, &M, &Q); for (int i = 0; i < M; ++i) { scanf("%d %d", &A[i], &B[i]); --A[i]; --B[i]; } Solver solver(N, M, A, B); for (int i = 0; i < Q; ++i) { int q, a, b; scanf("%d %d %d", &q, &a, &b); if (q == 1) { --a; solver.query1(a, b); } else { --a; --b; printf("%d\n", solver.query2(a, b)); } } }