結果
問題 | No.681 Fractal Gravity Glue |
ユーザー | はむこ |
提出日時 | 2017-08-16 13:11:25 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 14,378 bytes |
コンパイル時間 | 1,878 ms |
コンパイル使用メモリ | 185,816 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-13 12:52:16 |
合計ジャッジ時間 | 2,710 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 1 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> #include <sys/time.h> using namespace std; #define rep(i,n) for(long long i = 0; i < (long long)(n); i++) #define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++) #define pb push_back #define all(x) (x).begin(), (x).end() #define fi first #define se second #define mt make_tuple #define mp make_pair #define ZERO(a) memset(a,0,sizeof(a)) template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } #define exists find_if #define forall all_of using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; } using Pos = complex<double>; template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; } template<class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const unordered_set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; } template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;} string bits_to_string(ll input, ll n=64) { string s; rep(i, n) s += '0' + !!(input & (1ll << i)); reverse(all(s)); return s; } template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;}; string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); } struct ci : public iterator<forward_iterator_tag, ll> { ll n; ci(const ll n) : n(n) { } bool operator==(const ci& x) { return n == x.n; } bool operator!=(const ci& x) { return !(*this == x); } ci &operator++() { n++; return *this; } ll operator*() const { return n; } }; size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various class namespace myhash{ const int Bsizes[]={3,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81}; const int xor_nums[]={0x100007d1,0x5ff049c9,0x14560859,0x07087fef,0x3e277d49,0x4dba1f17,0x709c5988,0x05904258,0x1aa71872,0x238819b3,0x7b002bb7,0x1cf91302,0x0012290a,0x1083576b,0x76473e49,0x3d86295b,0x20536814,0x08634f4d,0x115405e8,0x0e6359f2}; const int hash_key=xor_nums[rand()%20]; const int mod_key=xor_nums[rand()%20]; template <typename T> struct myhash{ std::size_t operator()(const T& val) const { return (hash<T>{}(val)%mod_key)^hash_key; } }; }; template <typename T> class uset:public std::unordered_set<T,myhash::myhash<T>> { using SET=std::unordered_set<T,myhash::myhash<T>>; public: uset():SET(){SET::rehash(myhash::Bsizes[rand()%20]);} }; template <typename T,typename U> class umap:public std::unordered_map<T,U,myhash::myhash<T>> { public: using MAP=std::unordered_map<T,U,myhash::myhash<T>>; umap():MAP(){MAP::rehash(myhash::Bsizes[rand()%20]);} }; struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) * 1e-6; } struct init_{init_(){ gettimeofday(&start, NULL); ios::sync_with_stdio(false); cin.tie(0); srand((unsigned int)time(NULL)); random_seed = RAND_MAX / 2 + rand() / 2; }} init__; static const double EPS = 1e-14; static const long long INF = 1e18; static const long long mo = 1e9+7; #define ldout fixed << setprecision(40) template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; typedef vector<mint> vmint; struct RandomModInt { default_random_engine re; uniform_int_distribution<int> dist; #ifndef _DEBUG RandomModInt() : re(random_device{}()), dist(1, mint::Mod - 1) { } #else RandomModInt() : re(), dist(1, mint::Mod - 1) { } #endif mint operator()() { mint r; r.x = dist(re); return r; } } randomModInt; void randomModIntVector(vector<mint> &v) { int n = (int)v.size(); for(int i = 0; i < n; ++ i) v[i] = randomModInt(); } ostream &operator<<(ostream &o, const mint v) { o << v.x; return o; } // 行列xベクトル vector<mint> mul(vector<vector<mint>> A, vector<mint> x) { assert(A.size() >= 0); assert(A[0].size() == x.size()); vector<mint> b(A.size()); rep(i, A.size()) { rep(j, A[0].size()) { b[i] += A[i][j] * x[j]; } } return b; } // 行列x行列 vector<vector<mint>> mul(vector<vector<mint>> A, vector<vector<mint>> B) { assert(A[0].size() == B.size()); vector<vector<mint>> C(A.size(), vector<mint>(B[0].size())); rep(i, A.size()) rep(j, B[0].size()) { rep(h, A[0].size()) { C[i][j] += A[i][h] * B[h][j]; } } return C; } // ベクトル+ベクトル vector<mint> plu(vector<mint> x, vector<mint> y) { assert(x.size() == y.size()); rep(i, x.size()) { y[i] += x[i]; } return y; } // 行列+行列 vector<vector<mint>> plu(vector<vector<mint>> A, vector<vector<mint>> B) { assert(A.size() == B.size()); assert(A[0].size() == B[0].size()); rep(i, A.size()) rep(j, A[0].size()) { B[i][j] += A[i][j]; } return B; } vector<vector<mint>> transpose(vector<vector<mint>> A) { rep(i, A.size()) repi(j, i+1, A.size()) swap(A[i][j], A[j][i]); return A; } mint dot(vector<mint> x, vector<mint> y) { mint ret = 0; rep(i, x.size()) ret += x[i] * y[i]; return ret; } vector<mint> pow(vector<vector<mint>> A, vector<mint> x, long long k) { vector<vector<vector<mint>>> Ak; // Ak[i] = A^{2^i} Ak.pb(A); rep(i, 70) Ak.pb(mul(Ak[i], Ak[i])); ll cyc = 0; while (k) { if (k & 1) x = mul(Ak[cyc], x); k /= 2; cyc++; } return x; } // GF(mo)列sから、それを生成する最小線形漸化式Cを復元する // // 入力: 漸化式が生成したGF(mo)列s // 出力: d項間漸化式の係数C (size = d+1) // 漸化式 // C_0 s_{n} + C_1 s_{n-1} + ... + C_{L} s{n-L} = 0 // がsを生成した時、Cを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1, 1000000005(-2)] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1, 1000000006(-1)] (s[1] - s[0] = 0) int berlekampMassey(const vector<mint> &s, vector<mint> &C) { int N = (int)s.size(); C.assign(N + 1, mint()); vector<mint> B(N + 1, mint()); C[0] = B[0] = 1; int degB = 0; vector<mint> T; int L = 0, m = 1; mint b = 1; for(int n = 0; n < N; ++ n) { mint d = s[n]; for(int i = 1; i <= L; ++ i) d += C[i] * s[n - i]; if(d == mint()) { ++ m; } else { if(2 * L <= n) T.assign(C.begin(), C.begin() + (L + 1)); mint coeff = -d * b.inverse(); for(int i = -1; i <= degB; ++ i) C[m + i] += coeff * B[i]; if(2 * L <= n) { L = n + 1 - L; B.swap(T); degB = (int)B.size() - 1; b = d; m = 1; } else { ++ m; } } } C.resize(L + 1); return L; } // GF(mo)列aから、それを生成する最小線形漸化式\phiを復元する // berlekampMasseyとの違いは、係数の順序が違うのと安全用のassertチェックがあること。 // // 入力: 漸化式が生成したGF(mo)列a // 出力: d項間漸化式の係数\phi (size = d+1) // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // がaを生成した時、\phiを求める。 // // O(n^2) // // 例: // s = [1, 2, 4, 8] -> C = [1000000005(-2), 1] (s[1] - 2 * s[0] = 0) // s = [1, 1, 1, 1] -> C = [1000000006(-1), 1] (s[1] - s[0] = 0) void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector<mint> &a, vector<mint> &phi) { assert(a.size() % 2 == 0); int L = berlekampMassey(a, phi); reverse(phi.begin(), phi.begin() + (L + 1)); } // 漸化式 // \phi_0 a_0 + \phi_1 a_1 + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、a[k]をinitValues(=a[0:phi.size()-1])の線形結合の係数を返す。 // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // // O(n^2 log k) void linearlyRecurrentSequenceCoeffs(long long k, const vector<mint> &phi_in, vector<mint> &coeffs) { int d = (int)phi_in.size() - 1; assert(d >= 0); assert(phi_in[d].get() == 1); coeffs = vector<mint>(d); vector<mint> square; coeffs[0] = 1; int l = 0; while ((k >> l) > 1) ++l; for (; l >= 0; --l) { square.assign(d * 2 - 1, mint()); rep(i, d) rep(j, d) square[i + j] += coeffs[i] * coeffs[j]; for (int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if (c.x == 0) continue; rep(j, d) square[i - d + j] -= c * phi_in[j]; } rep(i, d) coeffs[i] = square[i]; if (k >> l & 1) { mint lc = coeffs[d - 1]; for(int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * phi_in[i]; coeffs[0] = mint() - lc * phi_in[0]; } } } // 漸化式 // \phi_0 a_{i} + \phi_1 a_{1} + ... + \phi_L a_L = 0 // と、initValues = a[0:phi.size()-1]が与えられる。 // この時、 // a_{k}を求める // // O(n^2 log k) // // また、副産物として、a[k]をinitVectorの線形結合として表す係数coeffが得られる // a[k] = coeff[0] * initValues[0] + coeff[1] * initValues[1] + ... + coeff[d-1] * initValues[d-1] // mint linearlyRecurrentSequenceValue(long long k, const vector<mint> &initValues, const vector<mint> &phi) { int d = phi.size() - 1; if(d == 0) return mint(); assert(d <= (int)initValues.size()); assert(k >= 0); if(k < (int)initValues.size()) return initValues[(int)k]; vector<mint> coeffs; linearlyRecurrentSequenceCoeffs(k, phi, coeffs); mint res; rep(i, d) res += coeffs[i] * initValues[i]; return res; } // 線形漸化的数列aのk番目は? // O(n^2 log k) mint reconstruct(long long k, vector<mint> a) { if (a.size() % 2) a.pop_back(); vector<mint> a_first_half; rep(i, a.size() / 2) a_first_half.push_back(a[i]); vector<mint> phi; computeMinimumPolynomialForLinearlyRecurrentSequence(a, phi); return linearlyRecurrentSequenceValue(k, a_first_half, phi); } ll f(ll m, ll x) { ll ret = 0; while (x) { ret += (x /= m); } return ret; } vll brutal(ll b, ll d) { if (b == 1) return vll(d, 1); vll ret; vll prev = brutal(b-1, d); rep(i, d) { for (auto x : prev) ret.pb(x); ret.pb(b); } for (auto x : prev) ret.pb(x); return ret; } int main(void) { ll n, b, d; cin >> n >> b >> d; vector<mint> x; x.pb(d); repi(i, 1, 100) x.pb(mint(d+1)*x.back()+mint(i+1)*d); mint ret = reconstruct(b-1, x) - mint(n + f(d+1, n)); cout << ret << endl; return 0; }