結果

問題 No.550 夏休みの思い出(1)
ユーザー uwiuwi
提出日時 2017-08-18 14:13:16
言語 Java21
(openjdk 21)
結果
AC  
実行時間 102 ms / 2,000 ms
コード長 13,216 bytes
コンパイル時間 6,600 ms
コンパイル使用メモリ 102,556 KB
実行使用メモリ 51,916 KB
最終ジャッジ日時 2024-10-14 14:53:08
合計ジャッジ時間 14,098 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 99 ms
51,532 KB
testcase_01 AC 99 ms
51,532 KB
testcase_02 AC 101 ms
51,916 KB
testcase_03 AC 101 ms
51,716 KB
testcase_04 AC 102 ms
51,532 KB
testcase_05 AC 102 ms
51,676 KB
testcase_06 AC 100 ms
51,352 KB
testcase_07 AC 99 ms
51,764 KB
testcase_08 AC 100 ms
51,568 KB
testcase_09 AC 101 ms
51,788 KB
testcase_10 AC 98 ms
51,380 KB
testcase_11 AC 98 ms
51,508 KB
testcase_12 AC 100 ms
51,816 KB
testcase_13 AC 100 ms
51,544 KB
testcase_14 AC 99 ms
51,748 KB
testcase_15 AC 98 ms
51,704 KB
testcase_16 AC 102 ms
51,824 KB
testcase_17 AC 99 ms
51,488 KB
testcase_18 AC 99 ms
51,408 KB
testcase_19 AC 100 ms
51,552 KB
testcase_20 AC 98 ms
51,716 KB
testcase_21 AC 99 ms
51,720 KB
testcase_22 AC 100 ms
51,536 KB
testcase_23 AC 102 ms
51,568 KB
testcase_24 AC 99 ms
51,668 KB
testcase_25 AC 100 ms
51,588 KB
testcase_26 AC 99 ms
51,580 KB
testcase_27 AC 99 ms
51,584 KB
testcase_28 AC 101 ms
51,712 KB
testcase_29 AC 99 ms
51,700 KB
testcase_30 AC 100 ms
51,544 KB
testcase_31 AC 101 ms
51,524 KB
testcase_32 AC 100 ms
51,556 KB
testcase_33 AC 98 ms
51,648 KB
testcase_34 AC 99 ms
51,652 KB
testcase_35 AC 96 ms
51,720 KB
testcase_36 AC 100 ms
51,684 KB
testcase_37 AC 97 ms
51,344 KB
testcase_38 AC 100 ms
51,544 KB
testcase_39 AC 99 ms
51,428 KB
testcase_40 AC 102 ms
51,428 KB
testcase_41 AC 99 ms
51,556 KB
testcase_42 AC 98 ms
51,492 KB
testcase_43 AC 101 ms
51,548 KB
testcase_44 AC 98 ms
51,492 KB
testcase_45 AC 100 ms
51,728 KB
testcase_46 AC 101 ms
51,604 KB
testcase_47 AC 99 ms
51,712 KB
testcase_48 AC 101 ms
51,600 KB
testcase_49 AC 100 ms
51,748 KB
testcase_50 AC 99 ms
51,412 KB
testcase_51 AC 100 ms
51,732 KB
testcase_52 AC 99 ms
51,748 KB
testcase_53 AC 98 ms
51,552 KB
testcase_54 AC 98 ms
51,600 KB
testcase_55 AC 99 ms
51,736 KB
testcase_56 AC 99 ms
51,416 KB
testcase_57 AC 102 ms
51,672 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package contest170728;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.InputMismatchException;
import java.util.List;
import java.util.Queue;
import java.util.Random;
import java.util.stream.Collectors;

public class D2 {
	InputStream is;
	PrintWriter out;
	String INPUT = "";
	
	void solve()
	{
		long a = nl(), b = nl(), c = nl();
		int mod = 2000000011;
		long[] f = {c, b, a, 1};
		for(int i = 0;i < 4;i++){
			f[i] %= mod;
			if(f[i] < 0)f[i] += mod;
		}
		List<FactorAndPower> faps = factorize(f, mod);
		List<Integer> ret = new ArrayList<>();
		for(FactorAndPower fap : faps){
			long val = -fap.factor[0];
			if(val < -mod/2){
				val += mod;
			}
			ret.add((int)val);
		}
		Collections.sort(ret);
		for(int v : ret){
			out.print(v + " ");
		}
	}
	
	public static List<FactorAndPower> factorize(long[] f, int mod)
	{
		List<FactorAndPower> faps = doSquareFreeFactorization(f, mod);
		List<FactorAndPower> nfaps = 
				faps.stream().flatMap(fap -> {
					List<FactorAndPower> res = doDistinctDegreeFactorization(fap.factor, mod);
					for(FactorAndPower resfap : res)resfap.power = fap.power;
					return res.stream();
				}).collect(Collectors.toList());
		List<FactorAndPower> nnfaps = 
				nfaps.stream().flatMap(fap -> {
					List<FactorAndPower> res = doCantorZassenhaus(fap, mod, new Random());
					return res.stream();
				}).collect(Collectors.toList());
		return nnfaps;
	}
	
	public static class FactorAndPower
	{
		long[] factor;
		long power;
		int degree;
		
		public FactorAndPower(long[] factor, long power) {
			this.factor = factor;
			this.power = power;
		}
		
		public FactorAndPower(long[] factor, long power, int degree) {
			this.factor = factor;
			this.power = power;
			this.degree = degree;
		}

		@Override
		public String toString() {
			return "FactorAndPower [factor=" + Arrays.toString(factor) + ", power=" + power + ", degree=" + degree
					+ "]";
		}
	}
	
	/**
	 * f -> f_1^1*f_2^2*f_3^3*... (% mod)
	 * @param f
	 * @param mod
	 * @return
	 */
	public static List<FactorAndPower> doSquareFreeFactorization(long[] f, int mod)
	{
		int i = 1;
		List<FactorAndPower> R = new ArrayList<>();
		long[] g = d(f, mod);
		if(g.length > 0){
			long[] c = gcd(f, g, mod);
			long[] w = div(f, c, mod);
			while(w.length != 1){
				long[] y = gcd(w, c, mod);
				long[] z = div(w, y, mod);
				if(z.length > 1){
					R.add(new FactorAndPower(z, i));
				}
				i++;
				w = y;
				c = div(c, y, mod);
			}
			if(c.length != 1){
				// c <- c^(1/p)
				long[] nc = new long[(c.length+mod-1)/mod];
				for(int j = 0;j < c.length;j+=mod)nc[j/mod] = c[j];
				c = nc;
				List<FactorAndPower> res = doSquareFreeFactorization(c, mod);
				for(FactorAndPower fap : res){
					fap.power *= mod;
					R.add(fap);
				}
			}
		}else{
			long[] nf = new long[(f.length+mod-1)/mod];
			for(int j = 0;j < f.length;j+=mod)nf[j/mod] = f[j];
			f = nf;
			List<FactorAndPower> res = doSquareFreeFactorization(f, mod);
			for(FactorAndPower fap : res){
				fap.power *= mod;
				R.add(fap);
			}
		}
		return R;
	}
	
	// TODO check v^q-vへの改善がわからなかった
	public static List<FactorAndPower> doCantorZassenhaus(FactorAndPower fap, int mod, Random gen)
	{
		assert mod % 2 == 1;
		Queue<FactorAndPower> ret = new ArrayDeque<>();
		int r = (fap.factor.length - 1) / fap.degree;
		int d = fap.degree;
		BigInteger E = BigInteger.valueOf(mod).pow(d).shiftRight(1);
		ret.add(fap);
		while(ret.size() < r){
			long[] h = gen.longs(gen.nextInt(fap.factor.length-1)+1, 0, mod).toArray(); // choose randomly
			long[] g = sub(pow(h, E, fap.factor, mod), new long[]{1}, mod);
			for(int i = ret.size()-1;i >= 0;i--){
				FactorAndPower u = ret.poll();
				if(u.factor.length > d+1){
					long[] gu = gcd(g, u.factor, mod);
					if(gu.length > 1 && gu.length < u.factor.length){
						ret.add(new FactorAndPower(gu, u.power, u.degree));
						ret.add(new FactorAndPower(div(u.factor, gu, mod), u.power, u.degree));
						continue;
					}
				}
				ret.add(u);
			}
		}
		return new ArrayList<>(ret);
	}
	
	
	
	public static List<FactorAndPower> doDistinctDegreeFactorization(long[] f, int mod)
	{
		long[] fstar = Arrays.copyOf(f, f.length);
		int i = 1;
		List<FactorAndPower> ret = new ArrayList<>();
		while(fstar.length >= 2*i){
			long[] xq = modulo(mod, fstar, mod);
			long[][] Q = mulRowAndCompanionMatrixes(xq, f, mod); // Method 1
			Q = pow(Q, i, mod);
			long[] R = sub(Q[0], new long[]{0, 1}, mod);
			long[] g = gcd(R, fstar, mod);
			if(g.length > 1){
				ret.add(new FactorAndPower(g, 1, i));
				fstar = div(fstar, g, mod);
			}
			i++;
		}
		if(fstar.length > 1){
			ret.add(new FactorAndPower(fstar, 1, fstar.length-1));
		}
		if(ret.isEmpty()){
			ret.add(new FactorAndPower(f, 1, 1));
		}
		return ret;
	}
	
	
	/////////////////
	
	public static long[] mul(long[] a, long[] b, int mod)
	{
		if(a.length == 0)return new long[0];
		long[] c = new long[a.length+b.length-1];
		long big = (Long.MAX_VALUE / mod - mod) * mod;
		for(int i = 0;i < a.length;i++){
			for(int j = 0;j < b.length;j++){
				c[i+j] += a[i]*b[j];
				if(c[i+j] >= big)c[i+j] -= big;
			}
		}
		for(int i = 0;i < c.length;i++)c[i] %= mod;
		return c;
	}

	public static long[] pow(long[] a, BigInteger E, long[] f, int mod)
	{
		long[] ret = {1};
		for(int i = E.bitLength()-1;i >= 0;i--){
			ret = modnaive(mul(ret, ret, mod), f, mod);
			if(E.testBit(i)){
				ret = modnaive(mul(ret, a, mod), f, mod);
			}
		}
		return ret;
	}
	
	public static long[] sub(long[] a, long[] b, int mod)
	{
		long[] c = new long[Math.max(a.length, b.length)];
		for(int i = 0;i < a.length;i++)c[i] += a[i];
		for(int i = 0;i < b.length;i++)c[i] -= b[i];
		for(int i = 0;i < c.length;i++)if(c[i] < 0)c[i] += mod;
		return normalize(c);
	}
	
	public static long[][] pow(long[][] A, long e, int mod)
	{
		long[][] MUL = A;
		int n = A.length;
		long[][] C = new long[n][n];
		for(int i = 0;i < n;i++)C[i][i] = 1;
		for(;e > 0;e>>>=1) {
			if((e&1)==1)C = mul(C, MUL, mod);
			MUL = mul(MUL, MUL, mod);
		}
		return C;
	}
	
	public static long[][] mul(long[][] A, long[][] B, int mod)
	{
		assert A[0].length == B.length;
		int m = A.length;
		int n = A[0].length;
		int o = B[0].length;
		long[][] C = new long[m][o];
		for(int i = 0;i < m;i++){
			for(int j = 0;j < o;j++){
				long sum = 0;
				for(int k = 0;k < n;k++){
					sum += (long)A[i][k] * B[k][j];
					sum %= mod;
				}
				C[i][j] = (int)sum;
			}
		}
		return C;
	}
	
	public static long[] modulo(long n, long[] f, int mod)
	{
		assert f.length > 0;
		int m = f.length;
		if(m == 1)return new long[0];
		long ih = invl(f[m-1], mod);
		long[] a = new long[m-1];
		for(int i = 0;i < m-1;i++)a[i] = ih*(mod-f[i])%mod;
		return poWCompanionMatrixesRow0(a, n, mod);
	}
	
	
	public static long[] d(long[] f, int mod)
	{
		if(f.length == 0)return new long[0];
		long[] ret = new long[f.length-1];
		for(int i = 1;i < f.length;i++){
			ret[i-1] = f[i] * i % mod;
		}
		return normalize(ret);
	}
	
	
	public static long[] gcd(long[] a, long[] b, int mod)
	{
		while(b.length > 0){
			long[] c = modnaive(a, b, mod);
			a = b; b = c;
		}
		if(a.length > 0){
			long ih = invl(a[a.length-1], mod);
			for(int i = 0;i < a.length;i++){
				a[i] = a[i] * ih % mod;
			}
		}
		return a;
	}
	
	static long[] normalize(long[] f)
	{
		for(int i = f.length-1;i >= 0;i--){
			if(f[i] != 0){
				return i == f.length-1 ? f : Arrays.copyOf(f, i+1);
			}
		}
		return new long[0];
	}
	
	public static long[] modnaive(long[] a, long[] b, int mod)
	{
		int n = a.length, m = b.length;
		if(n-m+1 <= 0)return a;
		long[] r = Arrays.copyOf(a, n);
		long ib = invl(b[m-1], mod);
		for(int i = n-1;i >= m-1;i--){
			long x = ib * r[i] % mod;
			for(int j = m-1;j >= 0;j--){
				r[i+j-(m-1)] -= b[j]*x;
				r[i+j-(m-1)] %= mod;
				if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod;
//				r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod);
			}
		}
		return normalize(r);
	}
	
	public static long[] div(long[] a, long[] b, int mod)
	{
		int n = a.length, m = b.length;
		if(n-m+1 <= 0)return new long[0];
		long[] r = Arrays.copyOf(a, n);
		long[] q = new long[n-m+1];
		long ib = invl(b[m-1], mod);
		for(int i = n-1;i >= m-1;i--){
			long x = ib * r[i] % mod;
			q[i-(m-1)] = x;
			for(int j = m-1;j >= 0;j--){
				r[i+j-(m-1)] -= b[j]*x;
				r[i+j-(m-1)] %= mod;
				if(r[i+j-(m-1)] < 0)r[i+j-(m-1)] += mod;
//				r[i+j-(m-1)] = modh(r[i+j-(m-1)]+(long)mod*mod - b[j]*x, MM, HH, mod);
			}
		}
		return q;
	}
	
	public static long invl(long a, long mod) {
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		return p < 0 ? p + mod : p;
	}

	public static long[][] poWCompanionMatrixes(long[] A, long m, int mod)
	{
		int n = A.length;
		long[] u = new long[A.length];
		u[0] = 1;
		long[][] CA = new long[n][n];
		for(int i = 0;i < n-1;i++)CA[i][i+1] = 1;
		CA[n-1] = A;
		for(int i = 0;1L<<i <= m;i++){
			if(m<<~i<0)u = mulRowAndMatrix(u, CA, mod);
			// A^(n) -> A^(2n)
			CA = mulRowAndCompanionMatrixes(mulRowAndMatrix(CA[0], CA, mod), A, mod);
		}
		return mulRowAndCompanionMatrixes(u, A, mod);
	}
	
	public static long[] poWCompanionMatrixesRow0(long[] A, long m, int mod)
	{
		int n = A.length;
		long[] u = new long[A.length];
		u[0] = 1;
		long[][] CA = new long[n][n];
		for(int i = 0;i < n-1;i++)CA[i][i+1] = 1;
		CA[n-1] = A;
		for(int i = 0;1L<<i <= m;i++){
			if(m<<~i<0)u = mulRowAndMatrix(u, CA, mod);
			// A^(n) -> A^(2n)
			CA = mulRowAndCompanionMatrixes(mulRowAndMatrix(CA[0], CA, mod), A, mod);
		}
		return u;
	}
	
	public static long[][] mulRowAndCompanionMatrixes(long[] u, long[] A, int mod)
	{
		int n = u.length;
		long[][] NA = new long[n][];
		NA[0] = Arrays.copyOf(u, n);
		for(int i = 1;i < n;i++){
			long v = u[n-1];
			for(int j = n-2;j >= 0;j--){
				u[j+1] = u[j];
			}
			u[0] = 0;
			for(int j = 0;j < n;j++){
				u[j] += v * A[j];
				u[j] %= mod;
			}
			NA[i] = Arrays.copyOf(u, n);
		}
		return NA;
	}
	
	private static long[] mulRowAndMatrix(long[] u, long[][] A, int mod)
	{
		int n = A.length;
		long[] nu = new long[n];
		for(int j = 0;j < n;j++){
			long s = 0;
			for(int i = 0;i < n;i++){
				s += A[i][j] * u[i];
				s %= mod;
			}
			nu[j] = s;
		}
		return nu;
	}

	
	void run() throws Exception
	{
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new PrintWriter(System.out);
		
		long s = System.currentTimeMillis();
		solve();
		out.flush();
		if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
//			@Override
//			public void run() {
//				long s = System.currentTimeMillis();
//				solve();
//				out.flush();
//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//			}
//		};
//		t.start();
//		t.join();
	}
	
	public static void main(String[] args) throws Exception { new D2().run(); }
	
	private byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;
	
	private int readByte()
	{
		if(lenbuf == -1)throw new InputMismatchException();
		if(ptrbuf >= lenbuf){
			ptrbuf = 0;
			try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
			if(lenbuf <= 0)return -1;
		}
		return inbuf[ptrbuf++];
	}
	
	private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
	private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
	
	private double nd() { return Double.parseDouble(ns()); }
	private char nc() { return (char)skip(); }
	
	private String ns()
	{
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}
	
	private char[] ns(int n)
	{
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while(p < n && !(isSpaceChar(b))){
			buf[p++] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}
	
	private int[] na(int n)
	{
		int[] a = new int[n];
		for(int i = 0;i < n;i++)a[i] = ni();
		return a;
	}
	
	private long[] nal(int n)
	{
		long[] a = new long[n];
		for(int i = 0;i < n;i++)a[i] = nl();
		return a;
	}
	
	private char[][] nm(int n, int m) {
		char[][] map = new char[n][];
		for(int i = 0;i < n;i++)map[i] = ns(m);
		return map;
	}
	
	private int[][] nmi(int n, int m) {
		int[][] map = new int[n][];
		for(int i = 0;i < n;i++)map[i] = na(m);
		return map;
	}
	
	private int ni() { return (int)nl(); }
	
	private long nl()
	{
		long num = 0;
		int b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}
		
		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}
	
	private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
0