結果

問題 No.515 典型LCP
ユーザー はまやんはまやんはまやんはまやん
提出日時 2017-08-26 00:19:55
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 262 ms / 1,000 ms
コード長 5,533 bytes
コンパイル時間 2,602 ms
コンパイル使用メモリ 191,660 KB
実行使用メモリ 28,020 KB
最終ジャッジ日時 2024-10-15 16:20:38
合計ジャッジ時間 5,855 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 252 ms
28,020 KB
testcase_01 AC 262 ms
28,020 KB
testcase_02 AC 135 ms
9,088 KB
testcase_03 AC 4 ms
6,528 KB
testcase_04 AC 5 ms
6,528 KB
testcase_05 AC 91 ms
9,088 KB
testcase_06 AC 93 ms
9,088 KB
testcase_07 AC 92 ms
8,960 KB
testcase_08 AC 127 ms
9,088 KB
testcase_09 AC 93 ms
9,088 KB
testcase_10 AC 94 ms
8,960 KB
testcase_11 AC 93 ms
8,960 KB
testcase_12 AC 94 ms
8,960 KB
testcase_13 AC 96 ms
8,960 KB
testcase_14 AC 11 ms
9,088 KB
testcase_15 AC 91 ms
8,832 KB
testcase_16 AC 91 ms
8,960 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;
template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac;
    Comb() {fac.resize(FAC_MAX, 1); ifac.resize(FAC_MAX, 1);rep(i, 1, FAC_MAX) fac[i] = fac[i - 1] * i;
        rep(i, 1, FAC_MAX) ifac[i] = T(1) / fac[i];}
    T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
    T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
    T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
        return aCb(n + k - 1, k); }
};

#ifdef _MSC_VER
inline unsigned int __builtin_clz(unsigned int x){unsigned long r;_BitScanReverse(&r,x);return 31-r;}
inline int __lg(int __n) { return sizeof(int) * 8 - 1 - __builtin_clz(__n); }
#endif
template<class T> struct RMQ { // [l,r)
    vector<T> V; vector<vector<int> > M, X; int N; RMQ() {} RMQ(vector<T> &v) { init(v); }
    void init(vector<T> &v) { V = v; N = V.size(); int ln = __lg(N) + 1; M.resize(ln); X.resize(ln);
        rep(i,0,ln){M[i].resize(N);X[i].resize(N);}rep(j,0,N) M[0][j] = X[0][j] = j;
        rep(i,0,ln-1){for(int j=0;j+(1<<i)<N;j++){if(V[M[i][j+(1<<i)]]<V[M[i][j]])
        M[i+1][j]=M[i][j+(1<<i)];else M[i + 1][j] = M[i][j]; if (V[X[i][j]]<V[X[i][j + (1 << i)]])
        X[i + 1][j] = X[i][j + (1 << i)];else X[i + 1][j] = X[i][j];}}}
    T getmin(int l, int r) { return V[getminidx(l, r)]; }
    int getminidx(int l, int r) {
        r = min(N, r); int d = __lg(r - l);
        if (V[M[d][r - (1 << d)]] < V[M[d][l]]) return M[d][r - (1 << d)]; else return M[d][l];}
    T getmax(int l, int r) { return V[getmaxidx(l, r)]; }
    int getmaxidx(int l, int r) {
        r = min(N, r); int d = __lg(r - l);
        if (V[X[d][l]] < V[X[d][r - (1 << d)]]) return X[d][r - (1 << d)]; else return X[d][l];}};
struct ManyLCP {
    vector<string> v; RMQ<int> st; vector<int> dic;
    void add(string s) { v.push_back(s); }
    void build() {
        vector<pair<string,int>> p;rep(i,0,v.size())p.push_back({v[i],i});sort(p.begin(), p.end());
        vector<int> vv; rep(i, 0, p.size() - 1) { string a = p[i].first, b = p[i + 1].first;
        int cnt = 0; rep(i, 0, min(a.length(), b.length())) {if (a[i]==b[i])cnt=i + 1;else break;}
        vv.push_back(cnt);}st.init(vv);dic.resize(v.size());rep(i,0,p.size()) dic[p[i].second] = i;}
    int lcp(int i, int j) {
        if(i==j)return v[dic[i]].size();int a=dic[i],b=dic[j];if(a>b)swap(a,b);return st.getmin(a,b);
    }};
/*---------------------------------------------------------------------------------------------------
            ∧_∧  
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     
    /   \     | |     
    /   / ̄ ̄ ̄ ̄/  |  
  __(__ニつ/     _/ .| .|____  
     \/____/ (u ⊃  
---------------------------------------------------------------------------------------------------*/


typedef long long ll;
int N, M;
ll X, D;
string S[101010];
void _main() {
    cin >> N;
    rep(i, 0, N) cin >> S[i];
    cin >> M >> X >> D;

    ManyLCP lcp;
    rep(i, 0, N) lcp.add(S[i]);
    lcp.build();

    ll ans = 0;
    ll x = X, d = D, n = N;
    rep(q, 0, M) {
        int i = (x / (n - 1)) + 1;
        int j = (x % (n - 1)) + 1;
        if (i > j) swap(i, j);
        else j++;

        ans += lcp.lcp(i - 1, j - 1);
        
        x = (x + d) % (n * (n - 1));
    }
    cout << ans << endl;
}
0