結果
| 問題 |
No.569 3 x N グリッドのパスの数
|
| コンテスト | |
| ユーザー |
sigma425
|
| 提出日時 | 2017-09-11 06:47:20 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 2,000 ms |
| コード長 | 9,151 bytes |
| コンパイル時間 | 2,462 ms |
| コンパイル使用メモリ | 193,944 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-07 16:47:17 |
| 合計ジャッジ時間 | 4,210 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 60 |
ソースコード
#include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define rep1(i,n) for(int i=1;i<=(int)(n);i++)
#define all(c) c.begin(),c.end()
#define pb push_back
#define fs first
#define sc second
#define show(x) cout << #x << " = " << x << endl
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
using namespace std;
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){return o<<"("<<p.fs<<","<<p.sc<<")";}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){o<<"sz = "<<vc.size()<<endl<<"[";for(const T& v:vc) o<<v<<",";o<<"]";return o;}
typedef long long ll;
int bsr(int x) { return 31 - __builtin_clz(x); }
using D = double;
const D pi = acos(-1);
using Pc = complex<D>;
void fft(bool type, vector<Pc> &c){ //multiply : false -> mult -> true
static vector<Pc> buf[30];
int N = c.size();
int s = bsr(N);
assert(1<<s == N);
if(buf[s].empty()){
buf[s]=vector<Pc>(N);
rep(i,N) buf[s][i] = polar<D>(1,i*2*pi/N);
}
vector<Pc> a(N),b(N);
copy(begin(c),end(c),begin(a));
rep1(i,s){
int W = 1<<(s-i);
for(int y=0;y<N/2;y+=W){
Pc now = buf[s][y];
if(type) now = conj(now);
rep(x,W){
auto l = a[y<<1 | x];
auto r = now * a[y<<1 | x | W];
b[y | x] = l+r;
b[y | x | N>>1] = l-r;
}
}
swap(a,b);
}
copy(begin(a),end(a),begin(c));
}
template<class Mint>
vector<Mint> multiply_fft(const vector<Mint>& x,const vector<Mint>& y){
const int B = 15;
int S = x.size()+y.size()-1;
int N = 2<<bsr(S-1);
vector<Pc> a[2],b[2];
rep(t,2){
a[t] = vector<Pc>(N);
b[t] = vector<Pc>(N);
rep(i,x.size()) a[t][i] = Pc( (x[i].v >> (t*B)) & ((1<<B)-1) , 0 );
rep(i,y.size()) b[t][i] = Pc( (y[i].v >> (t*B)) & ((1<<B)-1) , 0 );
fft(false,a[t]);
fft(false,b[t]);
}
vector<Mint> z(S);
vector<Pc> c(N);
Mint base = 1;
rep(t,3){
fill_n(begin(c),N,Pc(0,0));
for(int xt = max(t-1,0); xt<=min(1,t); xt++){
int yt = t-xt;
rep(i,N) c[i] += a[xt][i]*b[yt][i];
}
fft(true,c);
rep(i,S){
c[i] *= 1.0/N;
z[i] += Mint(ll(round(c[i].real()))) * base;
}
base *= 1<<B;
}
return z;
}
template<class D>
struct Poly{
vector<D> v;
int size() const{ return v.size();} //deg+1
Poly(int N=0) : v(vector<D>(N)){}
Poly(vector<D> v) : v(v){shrink();}
Poly& shrink(){
while(!v.empty()&&v.back()==D(0)) v.pop_back(); //double? iszeroをglobalに用意したほうがいいかな
return *this;
}
D at(int i) const{
return (i<size())?v[i]:D(0);
}
void set(int i,const D& x){ //v[i] := x
if(i>=size() && !x) return;
while(i>=size()) v.push_back(D(0));
v[i]=x;
shrink();
return;
}
Poly operator+(const Poly &r) const{
int N=max(size(),r.size());
vector<D> ret(N);
rep(i,N) ret[i]=at(i)+r.at(i);
return Poly(ret);
}
Poly operator-(const Poly &r) const{
int N=max(size(),r.size());
vector<D> ret(N);
rep(i,N) ret[i]=at(i)-r.at(i);
return Poly(ret);
}
Poly operator-() const{
int N=size();
vector<D> ret(N);
rep(i,N) ret[i] = -at(i);
return Poly(ret);
}
Poly operator*(const Poly &r) const{
if(size()==0||r.size()==0) return Poly();
return mul_fft(r);
}
Poly operator*(const D &r) const{
int N=size();
vector<D> ret(N);
rep(i,N) ret[i]=v[i]*r;
return Poly(ret);
}
Poly operator/(const Poly &y) const{
return div_fast(y);
}
Poly operator%(const Poly &y) const{
return rem_fast(y);
// return rem_naive(y);
}
Poly operator<<(const int &n) const{ // *=x^n
assert(n>=0);
int N=size();
vector<D> ret(N+n);
rep(i,N) ret[i+n]=v[i];
return Poly(ret);
}
Poly operator>>(const int &n) const{ // /=x^n
assert(n>=0);
int N=size();
if(N<=n) return Poly();
vector<D> ret(N-n);
rep(i,N-n) ret[i]=v[i+n];
return Poly(ret);
}
bool operator==(const Poly &y) const{
return v==y.v;
}
bool operator!=(const Poly &y) const{
return v!=y.v;
}
Poly& operator+=(const Poly &r) {return *this = *this+r;}
Poly& operator-=(const Poly &r) {return *this = *this-r;}
Poly& operator*=(const Poly &r) {return *this = *this*r;}
Poly& operator*=(const D &r) {return *this = *this*r;}
Poly& operator%=(const Poly &y) {return *this = *this%y;}
Poly& operator<<=(const int &n) {return *this = *this<<n;}
Poly& operator>>=(const int &n) {return *this = *this>>n;}
Poly mul_naive(const Poly &r) const{
int N=size(),M=r.size();
vector<D> ret(N+M-1);
rep(i,N) rep(j,M) ret[i+j]+=at(i)*r.at(j);
return Poly(ret);
}
Poly mul_ntt(const Poly &r) const{
return Poly(multiply_ntt(this->v,r.v));
}
Poly mul_fft(const Poly &r) const{
vector<D> ret = multiply_fft(v,r.v);
return Poly(ret);
}
Poly div_fast_with_inv(const Poly &inv, int B) const {
return (*this * inv)>>(B-1);
}
Poly div_fast(const Poly &y) const{
if(size()<y.size()) return Poly();
int n = size();
return div_fast_with_inv(y.inv(n),n);
}
Poly rem_naive(const Poly &y) const{
Poly x = *this;
while(y.size()<=x.size()){
int N=x.size(),M=y.size();
D coef = x.v[N-1]/y.v[M-1];
x -= (y<<(N-M))*coef;
}
return x;
}
Poly rem_fast(const Poly &y) const{
return *this - y * div_fast(y);
}
Poly strip(int n) const { //ignore x^n , x^n+1,...
vector<D> res = v;
res.resize(min(n,size()));
return Poly(res);
}
Poly rev(int n = -1) const { //ignore x^n ~ -> return x^(n-1) * f(1/x)
vector<D> res = v;
if(n!=-1) res.resize(n);
reverse(all(res));
return Poly(res);
}
Poly inv(int n) const{ // f * f.inv() = x^B + r(x) (B>=n)
int N = size();
assert(N>=1); //f : non0
assert(n>=N-1); //f = .. + c_{N-1}x^{N-1}
D coef = D(1)/at(N-1);
Poly a = rev();
Poly g(vector<D>(1,coef));
for(int i=1; i+N-2<n; i*=2){ //need to strip!!
g *= (Poly(vector<D>{2})-a*g).strip(2*i);
}
return g.rev(n+1-N);
}
friend ostream& operator<<(ostream &o,const Poly& x){
if(x.size()==0) return o<<0;
rep(i,x.size()) if(x.v[i]!=D(0)){
o<<x.v[i]<<"x^"<<i;
if(i!=x.size()-1) o<<" + ";
}
return o;
}
};
template<class D>
Poly<D> berlekamp_massey(const vector<D> &u){
int N = u.size();
vector<D> b = {D(-1)}, c = {D(-1)};
D y = D(1);
rep1(n,N){
int L = c.size(), M = b.size();
D x = 0;
rep(i,L) x += c[i]*u[n-L+i];
b.pb(0);
M++;
if(!x) continue;
D coef = x/y;
if(L<M){
auto tmp = c;
c.insert(begin(c),M-L,D(0));
rep(i,M) c[M-1-i] -= coef*b[M-1-i];
b=tmp;
y=x;
}else{
rep(i,M) c[L-1-i] -= coef*b[M-1-i];
}
}
return Poly<D>(c);
}
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll v):v(normS(v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ll extgcd(ll a,ll b,ll &x,ll &y) const{
ll u[]={a,1,0},v[]={b,0,1};
while(*v){
ll t=*u/ *v;
rep(i,3) swap(u[i]-=t*v[i],v[i]);
}
if(u[0]<0) rep(i,3) u[i]=-u[i];
x=u[1],y=u[2];
return u[0];
}
ModInt inv() const{
ll x,y;
extgcd(v,mod,x,y);
return make(normS(x+mod));
}
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
};
using mint = ModInt<1000000007>;
int dx[4]={1,0,-1,0};
int dy[4]={0,1,0,-1};
bool vis[4][20];
int res;
int H,W;
void dfs(int x,int y){
if(x==H-1 && y==W-1){
res++;
return;
}
vis[x][y] = 1;
rep(d,4){
int nx = x+dx[d];
int ny = y+dy[d];
if(0<=nx&&nx<H&&0<=ny&&ny<W&&!vis[nx][ny]) dfs(nx,ny);
}
vis[x][y] = 0;
}
int brute(int H_,int W_){
res = 0;
H = H_;
W = W_;
dfs(0,0);
return res;
}
int main(){
// vector<mint> vals;
// rep1(W,12){
// vals.pb(brute(4,W));
// }
vector<long long> vc = {1LL,8LL,38LL,184LL,976LL,5382LL,29739LL,163496LL,896476LL,4913258LL,26932712LL,147657866LL,809563548LL,4438573234LL,24335048679LL,133419610132LL,731487691902LL,4010463268476LL,21987818897998LL,120550710615560LL,660932932108467LL,3623639655071710LL,19867014742102743LL,108923158053332350LL};
vector<mint> vals;
for(long long v:vc) vals.pb(v);
auto mod = berlekamp_massey(vals);
// show(mod);
Poly<mint> a = vector<mint>{1};
Poly<mint> x = vector<mint>{0,1};
long long N;
cin>>N;
while(N){
if(N%2) (a*=x)%=mod;
x*=x;
x%=mod;
N/=2;
}
mint ans=0;
int K = mod.size();
rep(i,K) ans+=a.at(i)*vals[i];
cout<<ans<<endl;
}
sigma425