結果

問題 No.470 Inverse S+T Problem
ユーザー pazzle1230pazzle1230
提出日時 2017-09-15 02:41:34
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 5 ms / 2,000 ms
コード長 3,624 bytes
コンパイル時間 2,009 ms
コンパイル使用メモリ 130,784 KB
実行使用メモリ 7,128 KB
最終ジャッジ日時 2024-12-22 13:44:15
合計ジャッジ時間 3,194 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#include <utility>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
#define INF_LL (ll)1e18
#define INF (int)1e9
#define REP(i, n) for(int i = 0;i < (n);i++)
#define FOR(i, a, b) for(int i = (a);i < (b);i++)
#define all(x) x.begin(),x.end()
using ll = long long;
using PII = pair<int, int>;
const double eps = 1e-10;
template<typename A, typename B>inline void chmin(A &a, B b){if(a > b) a = b;}
template<typename A, typename B>inline void chmax(A &a, B b){if(a < b) a = b;}
class SCC{
private:
vector<vector<int> > gg, rg;
vector<int> order, comp;
vector<bool> used;
vector<vector<int> > ng, vs;
int n, nn;
public:
SCC(){}
SCC(int v) : gg(v), rg(v), comp(v, -1), used(v, 0), n(v){}
void add_edge(int x, int y){
gg[x].push_back(y);
rg[y].push_back(x);
}
int operator[](int k){
return comp[k];
}
void dfs(int v){
used[v] = true;
REP(i, gg[v].size()){
if(!used[gg[v][i]]) dfs(gg[v][i]);
}
order.push_back(v);
}
void rdfs(int v, int k){
used[v] = true;
comp[v] = k;
REP(i, rg[v].size()){
if(!used[rg[v][i]]) rdfs(rg[v][i], k);
}
}
int build(){
REP(i, n){
if(!used[i]) dfs(i);
}
fill(all(used), 0);
int k = 0;
for(int i = order.size()-1;i >= 0;i--){
if(!used[order[i]]) rdfs(order[i], k++);
}
nn = k;
//-------------------
vs.resize(k, vector<int>());
REP(i, n)
vs[comp[i]].push_back(i);
//-----------------------------------------------------------
//---------New Graph!----------------
ng.resize(k, vector<int>());
REP(i, n){
REP(j, gg[i].size()){
if(comp[i] != comp[gg[i][j]])
ng[comp[i]].push_back(comp[gg[i][j]]);
}
}
REP(i, nn){
sort(all(ng[i]));
ng[i].erase(unique(all(ng[i])), ng[i].end());
}
//------------------------------------------------------------
return k;
}
int size(){
return nn;
}
vector<vector<int> > graph(){
return ng;
}
vector<int> vertices(int v){
return vs[v];
}
};
class TwoSAT{
private:
SCC scc;
int n;
vector<bool> truth;
public:
TwoSAT(){}
TwoSAT(int _n) : n(_n), scc(2*_n){}
void add_state(int a, bool truth1, int b, bool truth2){
int na = truth1 ? a+n : a, nb = truth2 ? b+n : b;
a = truth1 ? a : a+n; b = truth2 ? b : b+n;
scc.add_edge(na, b);
scc.add_edge(nb, a);
}
bool build(){
scc.build();
REP(i, n){
if(scc[i] == scc[i+n]) return false;
if(scc[i] > scc[i+n]) truth.push_back(true);
else truth.push_back(false);
}
return true;
}
vector<bool> result(){
return truth;
}
bool operator[](int k){
return truth[k];
}
};
int main(void){
int N;
string u[114514];
map<string, vector<PII> > mp;
cin >> N;
if(N > 100){
cout << "Impossible" << endl;
return 0;
}
TwoSAT tsat(N);
REP(i, N){
cin >> u[i];
mp[u[i].substr(0, 1)].push_back({i, 1});
mp[u[i].substr(1, 2)].push_back({i, 1});
mp[u[i].substr(0, 2)].push_back({i, 0});
mp[u[i].substr(2, 1)].push_back({i, 0});
}
for(auto ei : mp){
auto v = ei.second;
REP(i, v.size()){
FOR(j, i+1, v.size()){
tsat.add_state(v[i].first, 1-v[i].second, v[j].first, 1-v[j].second);
}
}
}
if(!tsat.build()){
cout << "Impossible" << endl;
return 0;
}
REP(i, N){
if(tsat[i]){
cout << u[i].substr(0, 1) << " " << u[i].substr(1, 2) << endl;
}else{
cout << u[i].substr(0, 2) << " " << u[i].substr(2, 1) << endl;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0