結果
| 問題 |
No.569 3 x N グリッドのパスの数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-09-16 18:27:38 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 11 ms / 2,000 ms |
| コード長 | 5,393 bytes |
| コンパイル時間 | 1,794 ms |
| コンパイル使用メモリ | 107,732 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-08 01:36:18 |
| 合計ジャッジ時間 | 3,950 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 60 |
ソースコード
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <array>
using namespace std;
constexpr int mod = 1e9 + 7;
struct modint {
int n;
modint(int n = 0) : n(n) {}
};
modint operator+(modint a, modint b) { return modint((a.n += b.n) >= mod ? a.n - mod : a.n); }
modint operator-(modint a, modint b) { return modint((a.n -= b.n) < 0 ? a.n + mod : a.n); }
modint operator*(modint a, modint b) { return modint(1LL * a.n * b.n % mod); }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint &operator+=(modint &a, modint b) { return a = a + b; }
modint &operator-=(modint &a, modint b) { return a = a - b; }
modint &operator*=(modint &a, modint b) { return a = a * b; }
modint modinv(modint n) {
if (n.n == 1) return 1;
return modinv(mod % n.n) * (mod - mod / n.n);
}
modint operator/(modint a, modint b) { return a * modinv(b); }
modint simpath(int n) {
constexpr int H = 4;
auto setval = [&](vector<int> &d, array<int, H> &a, int k, int v) {
for (int i = 0; i < d.size(); i++) {
if (d[i] == k) a[i] = v;
}
};
auto getval = [&](vector<int> &d, array<int, H> &a, int k) -> int {
for (int i = 0; i < d.size(); i++) {
if (d[i] == k) return a[i];
}
return k;
};
vector<pair<int, int>> es;
for (int x = 0; x < n; x++) {
for (int y = 0; y < H; y++) {
if (y + 1 < H) es.emplace_back(x * H + y, x * H + y + 1);
if (x + 1 < n) es.emplace_back(x * H + y, x * H + y + H);
}
}
vector<int> deg(n * H);
for (auto e : es) {
deg[e.first]++;
deg[e.second]++;
}
vector<pair<array<int, H>, modint>> dp, val;
vector<int> fr = { 0 };
dp.push_back(make_pair(array<int, H> {}, 1));
vector<int> fr1;
for (auto e : es) {
deg[e.first]--;
deg[e.second]--;
fr1.clear();
for (int u : fr) if (deg[u] > 0) fr1.push_back(u);
fr1.push_back(e.second);
sort(fr1.begin(), fr1.end());
fr1.erase(unique(fr1.begin(), fr1.end()), fr1.end());
val.clear();
for (auto kv : dp) {
auto mate = kv.first;
array<int, H> mate1 = {};
for (int i = 0; i < fr1.size(); i++) mate1[i] = fr1[i];
for (int i = 0; i < fr.size(); i++) setval(fr1, mate1, fr[i], mate[i]);
val.emplace_back(mate1, kv.second);
int mateu = getval(fr, mate, e.first);
int matev = getval(fr, mate, e.second);
if (mateu == e.second && matev == e.first) continue;
if (mateu == -1 || matev == -1) continue;
setval(fr1, mate1, e.first, -1);
setval(fr1, mate1, e.second, -1);
setval(fr1, mate1, mateu, matev);
setval(fr1, mate1, matev, mateu);
val.emplace_back(mate1, kv.second);
}
sort(val.begin(), val.end());
int i = 0;
dp.clear();
while (i < val.size()) {
int j = i;
modint sum = 0;
while (i < val.size() && val[i].first == val[j].first) {
sum += val[i].second;
i++;
}
bool ok = true;
bool has0 = false;
for (int u : fr1) {
int v = getval(fr1, val[j].first, u);
if (v == 0) has0 = true;
if (v != 0 && v != -1 && u != v && deg[v] == 0) ok = false;
}
if (ok && has0) dp.emplace_back(val[j].first, sum);
}
swap(fr, fr1);
}
for (auto kv : dp) {
auto mate = kv.first;
if (getval(fr, mate, H * n - 1) == 0) {
return kv.second;
}
}
// don't come here
abort();
}
// ref: https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
vector<modint> berlekamp_massey(vector<modint> s) {
const int N = s.size();
vector<modint> C(N);
vector<modint> B(N);
C[0] = 1;
B[0] = 1;
int L = 0;
int m = 1;
modint b = 1;
for (int n = 0; n < N; n++) {
modint d = s[n];
for (int i = 1; i <= L; i++) d += C[i] * s[n - i];
if (d.n == 0) {
m++;
} else if (2 * L <= n) {
auto T = C;
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * (d / b);
m++;
}
}
C.resize(L + 1);
reverse(C.begin(), C.end());
return C;
}
vector<modint> poly_mod(vector<modint> a, const vector<modint> &m) {
const int n = m.size();
for (int i = a.size() - 1; i >= m.size(); i--) {
for (int j = 0; j < m.size(); j++) {
a[i - n + j] += a[i] * m[j];
}
}
a.resize(m.size());
return a;
}
// a*b mod m
vector<modint> poly_mul(const vector<modint> &a, const vector<modint> &b, const vector<modint> &m) {
vector<modint> ret(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
ret[i + j] += a[i] * b[j];
}
}
return poly_mod(ret, m);
}
// x^n mod m
vector<modint> nth_power(long long n, const vector<modint> &m) {
vector<modint> ret(1);
vector<modint> x(2);
ret[0] = x[1] = 1;
while (n > 0) {
if (n & 1) ret = poly_mul(ret, x, m);
x = poly_mul(x, x, m);
n /= 2;
}
return poly_mod(ret, m);
}
int main() {
vector<modint> a(30);
for (int i = 0; i < a.size(); i++) {
a[i] = simpath(i + 1);
}
vector<modint> m = berlekamp_massey(a);
m.pop_back();
for (int i = 0; i < m.size(); i++) {
m[i] *= mod - 1;
}
long long n;
cin >> n;
auto x = nth_power(n, m);
modint ans;
for (int i = 0; i < x.size(); i++) {
ans += x[i] * a[i];
}
cout << ans.n << endl;
}